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Abstract - The algorithm of minimum error entropy with 
decision feedback (MEE-DF) has robustness to impulsive 
noise and severe multipath fading. However it has heavy 
computational burden being an obstacle for practical 
implementation. In this paper, a recursive gradient estimation 
method is proposed. The recursive gradient calculation 
method reduces the computations of to for the data block size. 
This indicates that the proposed recursive method is more 
appropriate for practical implementations of the MEE-DF 
algorithm 
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I. INTRODUCTION 

 
  Multipath fading and impulsive noise degrade 
performance in many communication systems such as 
satellite-mobile radio link, power line and underwater 
communication channels [1][2][3].  
 Typical adaptive equalizer algorithms to counteract 
multipath fading are MSE-based ones being highly 
sensitive to impulsive noise. But ITL based methods 
utilizing nonparametric probability density function (PDF) 
estimation and error entropy are robust to impulsive noise. 
Minimization of error entropy (MEE) has shown superior 
performance compared to MSE-based methods in 
supervised channel equalization applications [4]. While the 
MSE criterion uses only second order statistics being 
adequate under the assumptions of linearity and 
Gaussianity, error entropy considers all the higher order 
statistics of the error signal and is a scalar quantity that 
provides a measure for the average information contained 
in a given error distribution. When error entropy is 
minimized, all higher order moments are minimized and 
the error samples of adaptive systems are concentrated on 
zero as well. As a useful alternative definition of entropy, 
Renyi’s quadratic error entropy is effectively used in ITL 
methods [4]. 
 In the work [5], the performance of supervised linear 
MEE algorithm under impulsive noise environments has 
been studied, and for enhanced performance the MEE 
algorithm with decision feedback (MEE-DF) was 
proposed. It has shown significantly improved convergence 
in the situation of severely distorted channel and impulsive 

noise. One of the problems can be the computational 
burden of double summations induced from estimating the 
gradient for weight update at each iteration time. This 
computational burden must be an obstacle for practical 
implementation. In order to reduce the computational 
complexity of the MEE-DF algorithm for practical 
implementation a new method of computing each gradient 
recursively is proposed in this paper. 
 
II. MEE ALGORITHM WITH DECISION FEEDBACK 

 
 The Reny’s quadratic entropy is associated with a 
probability density function as 

))(log()( 2∫−= deefeH E    (1) 
 For the form of the PDF, the Parzen estimator [6] with 
Gaussian kernel )(⋅σG and a block of N  past error 
samples can be employed as 
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 Then the combination of Reny’s quadratic entropy with 
the Parzen window leads to an estimation of entropy by 
computing interactions among pairs of error samples. The 
sum of all error pairs of interactions is called information 
potential, eIP  [4]. 
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Obviously, MEE is equivalent to maximizing the 

information potential eIP .  
In order for the MEE criterion to be applied to tapped 

delay line structures with DF that consist of a feed-forward 

filter with weight vector F
kW  and a feedback filter with 

weight vector B
kW , the algorithm has to have the DF part 

using produced decisions kd
∧

. While the feed-forward 
filter receives input kx to produce output ky , the feedback 
filter receives the sequence of decisions.  

When the number of weights in feed-forward is A and 
the one of feedback filter section is B , respectively, then 
output ky becomes  
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weight vector B
kW . The input vector is   
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decided symbols. 
The filter weights are adjusted recursively to minimize 

the cost function (6) (i,e, to maximize eIP ) using the 
calculated error kkk yde −= in training mode and 

kkk yde −=
∧

 in decision directed mode. Then the feed-

forward weight vector F
kW  and the feedback weight 

vector B
kW are updated based on steepest ascent method 

with the step size DFMEE−μ  and the gradients  
For the use of the gradient ascent method in 

maximization of eIP in [4], we have the gradient of the cost 

function eIP  with respect to FW  and BW  as 
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Using these gradients as introduced in [5] the MEE-DF 

algorithm with step size DFMEE−μ  becomes 
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As shown in (5) and (6), it is observed that the gradient 
vector F
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 at each iteration are 

estimated through the computation of )( 2NO (due to 
double summations) for each filter section. This 
computational burden must be an obstacle for practical 
implementation. In order to reduce the computational 
complexity of the MEE-DF algorithm for practical 
implementation a new method of computing each gradient 
recursively through utilizing the previously calculated 
gradient and current data is proposed. 

 
 
 

III. RECURSIVE GRADIENT CALCULATION 
 

Each gradient vector F
k∇  and B

k∇  can be rewritten in 
two cases; the initial and steady state.  In the initial state for 
the time Nk ≤≤1  each gradient vector can be expressed as  

.)(
2

1

1 1
22 ∑ ∑

= =
−=∇

k

i

k

j
ij

F
k ee

kσ
 

])[(2 ijij eeG XX −−⋅ σ    (9) 

and 

.)(
2

1

1 1
22 ∑ ∑

= =
−=∇

k

i

k

j
ij

B
k ee

kσ
 

]ˆˆ)[( 112 −− −−⋅ ijij eeG DDσ   (10) 

Separating the data related with time k from each 
summation leads to 
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Similarly, the backward gradient becomes  
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In the steady state for 1+≥ Nk , the gradient for the feed 
forward section at time 1−k  is  
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Similarly, the gradient at time 1−k  for the feedback 
section is 
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IV. RESULTS AND DISCUSSIONS 

 
It is noticeable when we consider the computational 

complexity )( 2NO of the original gradient (5) and (6) that 
the resulting recursive estimation of initial state gradients 
(11) and (12) for  Nk ≤≤1  and the steady state gradients 
(13) and (14) for 1+≥ Nk  obviously has reduced 
computations )(NO  which is more appropriate to practical 
implementations.  

In this section we investigate how much the proposed 
recursive estimation of (13) and (14) reduces 
computational burden in the aspect of multiplications 
compared to the original gradient estimation of (5) and (6). 
For convenience, the Gaussian kernel )(2 ij eeG −σ is 

treated as a function value for )( ij ee − and the steady 

state estimation is dealt with. Also 222
1
Nσ

or 22
1
Nσ

are 

treated as constants.     
Then the equation (5) and (6) require 

12 2 +N multiplications for each forward and backward 
weight. 

However, the equation (13) and (14) demands 
24 +N multiplications for each forward and backward 

weight.  This can be illustrated in the Fig. 1 for clearer 
comparison. 
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Fig. 1. Comparison of the number of multiplications for 

various data block size N 

From the Fig. 1, we can mention that when the data 
block size N is smaller than 2 the computational 
complexity is lower than the proposed method, but in the 
case of the data block size N being greater than 2 the 
computational complexity of the proposed one is 
significantly low showing a linear increase while the 
conventional method increases by the square of the block 
size N. Because large data block sizes ensure reliable 
density estimates as depicted in [7], they must be selected 
under the consideration of a computational cost and reliable 
performance. So the proposed method provides a 
significantly wide range of choice for the data block size N. 

 
V. CONCLUSION 

 
It has been revealed that decision feedback MEE 

algorithms have robustness against impulsive noise and 
severe multipath fading. However the gradient of MEE-DF 
algorithm is estimated through the computation of double 
summations at each iteration time for each filter section. 
This computational burden must be an obstacle for 
practical implementation. In this paper, for the advantages 
in implementation, a recursive gradient estimation method 
is proposed. The recursive gradient calculation method 
reduces the computational burden of )( 2NO  to )(NO . 
This indicates that the proposed recursive method is 
efficient in channel equalization and adaptive signal 
processing applications in which the MEE-DF can be 
adopted. And the gradient estimation of the decision 
feedback MEE algorithm is more appropriate for practical 
implementations.  
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