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Abstract - More complex technical systems and higher levels 
of integration of electronic circuits lead to new requirements 
on the data treatment of modern signal processing systems, 
especially for sensing systems. This paper presents curve 
fitting methodology for analogue sensor’s characteristics 
described by datasheet lookup tables. This is achieved by 
MATLAB’s Curve Fitting Toolbox, which provides a library 
of linear, nonlinear, and nonparametric fitting models. A 
method for implement achieved polynomial equations as 
calibration template in transducer electronic data sheets is 
suggested in the end of presentation.  

Keywords – Curve fitting, Goodness of fit statistics, 
MATLAB, Intelligent sensors, TEDS 

 
I. INTRODUCTION 

 
 At the core of any data acquisition system is interpreta-
tion of a voltage signal based on information about the 
analog sensor that makes the measurement intelligible. 
Typically, these are standard curves and equations specific 
to the type of transducer. Sensor calibration, however, 
takes this process one step farther by considering trans-
ducers on an individual basis. The sensor output voltage is 
mapped to a physical measurement based on metrics 
obtained from a specific sensor calibration. Although many 
sensors are linear over the limited range, these sensors 
exhibit a slight but progressively more nonlinear 
characteristic as the measurement range widens. Conse-
quently, over an extended span, curve fitting is necessary if 
the system is to achieve a high level of precision.  
 With the facility of computation now available through 
digital computers and microprocessors, the problem of 
estimation of transducer’s transfer characteristics is being 
increasingly tackled using software techniques. However, 
for inherent nonlinear sensors, a software solution depends 
upon the proper approach through mathematical modeling 
of the response curve [5, 9]. 
 The purpose of this paper is to assist engineers and 
scientists to implement the newly released Curve Fitting 
Toolbox in order to achieve more precise results. The 
presented material facilitates users to create calibration 
equations from basic calibration data and use these 
equations to make accurate measurements. 
  

II. PARAMETRIC CURVE FITTING 
 

 Parametric fitting involves finding coefficients (para-
meters) for one or more models that fit to data [1, 2]. The 
model is a function of the independent variable and one or 

more coefficients. The appropriate mathematical model of 
sensors characteristics is can be obtained by Curve Fitting 
Toolbox™ software. This toolbox is a collection of 
graphical user interfaces and M-file functions for curve and 
surface fitting that operate in the MATLAB® technical 
computing environment. The toolbox includes a library of 
various parametric models, summarized in table 1. [3, 4] 
 

TABLE 1. CURVE FITTING TOOLBOX LIBRARY MODELS  
 

Model Definition 
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amplitude, bi is the centroid (location), ci is 
related to the peak width, n is the number of 
peaks to fit, and 1 ≤ n ≤ 8 

Polynomials 

in
n

i
i xpy −+

+

=
∑= 1

1

1

, where pi are model’s 

parameters, n + 1 is the order of the polynomial, 
n is the degree of the polynomial, and 1 ≤ n ≤ 8 
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model’s parameters, n and m are the degree of 
the numerator and denominator polynomials − 
1 ≤ n ≤ 5 and 1 ≤ m ≤ 5 
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sin , where ai is the 

amplitude, bi is the frequency, and ci is the 
phase constant for each sine wave term, n is the 
number of terms in the series and 1 ≤ n ≤ 8 

Weibull 
Distribution 

baxb eabxy −−= 1 , where a is the scale 
parameter and b is the shape parameter 

 
 Curve Fitting Toolbox software uses the method of least 
squares when fitting data. The supported types of least 
squares fitting include: linear, weighted linear, constrained, 
robust, and nonlinear [1, 2, 3, 4].  
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III. CURVE FITTING METHODOLOGY 
 
 The proposed methodology for curve fitting of sensors’ 
characteristics is illustrated with the block diagram given 
on fig. 1. A particular application might dictate still other 
aspects of model fitting that are important to achieving a 
good fit, such as a simple model that is easy to interpret.  
 On the first step Importing Data the chosen character-
ristic must be represented as the predictor (X) data, respon-
se (Y) data, and weights. If the weights are not imported, 
then they are assumed to be 1 for all data points. The data 
may be taking either from the datasheets of sensor’s 
manufacturer, or by measurements of the particular sensor. 

Yes
No

3. Assessing Goodness of Fit

3.1. Residuals Plot Analysis 

3.2.Goodness of fit statistics

3.3. Confidence and 
Prediction Bounds

4. Saving the Fit Results

2. Fitting Data

1. Importing Data 

Yes No

Yes No

Yes
No

3. Assessing Goodness of Fit

3.1. Residuals Plot Analysis 

3.2.Goodness of fit statistics

3.3. Confidence and 
Prediction Bounds

4. Saving the Fit Results

2. Fitting Data

1. Importing Data 

Yes No

Yes No

 
Fig. 1. The block diagram of the curve fitting methodology. 

 
 On the next step Fitting Data one model from the library 
of parametric models listed in table 1 is selected. 
According to the shape and specificity of the sensor 
characteristic the appropriate selection must be done. The 
fitting procedure can be successful in short time if the 
model is suitable and correspond to the real characteristic. 
 After fitting data with one or more models, the next 
important step Assessing Goodness of Fit must be 
implemented. The toolbox provides these methods to assess 
goodness of fit for both linear and nonlinear parametric fits 
[1, 2, 3, 4]: residual analysis, goodness of fit statistics and 
confidence and prediction bounds. 
 These methods can be divided into two types: graphical 
and numerical.  Plotting residuals and prediction bounds 
are graphical methods that aid visual interpretation, while 
computing goodness of fit statistics and coefficient 

confidence bounds yield numerical measures, that aid 
statistical reasoning. Graphical measures allow viewing the 
entire data set at once, and they can easily display a wide 
range of relationships between the model and the data. The 
numerical measures are more narrowly focused on a 
particular aspect of the data and often try to compress that 
information into a single number. In practice, depending on 
sensor characteristic, number of data points and analysis 
requirements, often must be used both types to determine 
the best fit. 
 Residual Plot Analysis. The residual for the ith data point 
ri is defined as the difference between the observed 
response value yi and the fitted response value iŷ , and is 
identified as the error associated with the data: 
   iii yyr ˆ−= .                                          (1) 
 Assuming the fitting model is correct, the residuals 
approximate the random errors. Therefore, if the residuals 
appear to behave randomly, it suggests that the model fits 
the data well. However, if the residuals display a 
systematic pattern, it is a clear sign that the model fits the 
data poorly. It must be notice that many results of model 
fitting, such as confidence bounds, will be invalid should 
the model be grossly inappropriate for the data. 
 Goodness of fit statistics. After using graphical methods 
to evaluate the goodness of fit, it must be examine the 
goodness of fit statistics. For parametric models Curve 
Fitting Toolbox supports following types of statistics [3, 4]: 
the sum of squares due to error (SSE); coefficient of 
determination (R-square); adjusted R-square and root mean 
squared error (RMSE). 
 The sum of squares due to error measures the total 
deviation of the response values from the fit to the response 
values. It is also called the summed square of residuals and 
is given whit equation: 
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where ωi are the weights. The weights determine how 
much each response value influences the final parameter 
estimates. If a value of SSE is closer to 0 indicates that the 
model has a smaller random error component, and that the 
fit will be more useful for prediction. 
 Coefficient of determination (R-square) determining how 
successful the fit is in explaining the variation of the data. 
R-square is the square of the correlation between the 
response values and the predicted response values: 
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where y  is mean value of yi. R-square with a value closer 
to 1 indicating that the model accounts for a greater 
proportion of variance. 

If the number of fitted coefficients increases in the 
model, R2 will increase although the fit may not improve in 
a practical sense. To avoid this situation, should be used the 
degrees of freedom adjusted R2 statistic. This statistic is 
based on the residual degrees of freedom v defined as the 
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number of response values n minus the number of fitted 
coefficients m estimated from the response values: 

                                   mnv −= ,                                  (4) 
where v indicates the number of independent pieces of 
information involving the n data points that are required to 
calculate the sum of squares. Note that if parameters are 
bounded and one or more of the estimates are at their 
bounds, then those estimates are regarded as fixed. The 
number of such parameters increases the degrees of 
freedom. The adjusted R2 statistic is given: 
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The adjusted R-square statistic has a value closer to 1 
indicating a better fit. Negative values can occur when the 
model contains terms that do not help to predict the 
response. 
 Root mean squared error (RMSE) is also known as the fit 
standard error and the standard error of the regression. It is 
an estimate of the standard deviation of the random 
component in the data, and is defined as 
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 Just as RMSE value closer to 0 indicates a fit that is more 
useful for prediction. 
 Confidence and prediction bounds define the lower and 
upper values of the associated interval, and define the 
width of the interval. The width of the interval indicates 
how uncertain have about the fitted coefficients, the 
predicted observation, or the predicted fit. A very wide 
interval for the fitted coefficients indicate that should be 
used more data when fitting.  
 The saved information on the last step Saving the Fit 
Results, can be used for documentation purposes, or to 
extend data exploration and analysis.  
 

IV. APPLICATION OF SENSORS CURVE FITTING 
 

 IEEE 1451.4 is a standard that defines a relatively 
simple, straightforward mechanism for adding intelligent, 
plug and play capabilities to traditional analog sensors.  
Without adding any new hardware to the system, these plug 
and play sensors can bring real, immediate benefits in ease 
of use and productivity to any measurement and automati-
on system that uses sensors [6, 7]. The underlying mecha-
nism for plug and play identification is the standardization 
of a Transducer Electronic Data Sheet (TEDS). The 
information stored in TEDS enables the system to identify, 
characterize, interface, and properly use the signal from the 
analog sensor. In addition to such configuration 
information TEDS can store calibration data specific to an 
individual sensor. Sensor calibration considers transducers 
on an individual basis. In other words, the sensor output 
voltage is mapped to a physical measurement based on 
metrics obtained from a specific sensor calibration. 
 The data stored in the sensor’s EEPROM or a virtual 
TEDS file is compressed to save space [7]. There are 

sixteen separate standard templates for each type of sensor. 
In addition to these standard templates, there are three 
calibration templates: a calibration table, frequency 
response table and polynomial calibration curve. 

The calibration table template describes a lookup table 
with the electrical-to-physical transfer function of a 
transducer. The calibration table template provides a simple 
means of recording a few data points for calibration 
purposes. This is particularly useful when calibrating 
around a very narrow range of values.  

The frequency response table template specifies the 
frequency response transfer function of a transducer with a 
lookup table of frequency-amplitude pairs. 

The aim of presented investigation is to precisely 
characterize a transducer over its entire range. Most 
appropriate for such initiative is polynomial calibration 
curve. This may prove difficult, especially in the case of a 
transducer with a highly nonlinear transfer function, such 
as a thermocouple or thermistor. To make effective use of 
the calibration curve template, several calibration points 
must be taken and then fitted to a polynomial curve. This 
may take significantly more time than collecting a few data 
points for a calibration table. However, the tradeoff is 
greater accuracy and a wider range of calibrated values.  

Using the proposed approach the transfer characteristic 
of thermistor PR222J2 is fitted with appropriate parametric 
model. For input data of temperature dependence is used 
the detailed look up table given in datasheet of thermistor’s 
manufacturer U.S. SENSOR Inc. [8]. 

 
 

Fig. 2. The data, fit, prediction bounds and residuals for 
transfer characteristic of thermistor PR222J2. 

 
 The data, fit, prediction bounds and residuals for fitting 
of full transfer characteristic are shown in figure 2. In table 
2 are given the fitting numerical results for models’ 
parameters and goodness of fit statistics. For a first fitting 
model four parametric exponentials (Exp2) is chosen, 
because it is well know that the transfer functions of 
thermistors are exponential. On the other hand the TEDS 
standard support only polynomial functions, therefore like 
a second model is proposed 9th degree polynomial (Poly9). 
It can be seen that the residuals for the Exp2 model appear 
randomly scattered around zero and indicating that this 
model describes the data well. The same conclusion can be 
done comparing numerical values of SSE and RMSE (see 
Table 2). 
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TABLE 2. RESULTS FROM CURVE FITTING OF THERMISTOR’S TRANSFER CHARACTERISTIC 
 

 
Full Characteristic 

Divided Characteristic 

 T = [−80 ÷−68] °C T = [−67 ÷ 4] °C T = [5 ÷ 80] °C 

Model Exponential (Exp2) 9th Degree Polynomial (Poly9) 
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a 0.0002613 p1 −5.912.10-18 1.324.10-10 −4.737.10-16 4.922.10-19 

b −0.1048 p2 5.691.10-16 8.816.10-8 −9.46.10-14 −1.736.10-16 

c 0.006674 p3 2.925.10-14 2.607.10-5 −8.671.10-12 2.18.10-14 

d −0.0545 p4 −2.463.10-12 0.004496 −4.071.10-10 −5.428.10-13 

 

p5 −1.741.10-10 0.4982 −1.188.10-8 −1.7.10-10 

P6 1.181.10-8 36.79 −1.266.10-7 2.553.10-8 

p7 −9.112.10-8 1810   −3.317.10-6 −1.987.10-6 

p8 4.382.10-6 5.725.104 0.0001078 0.0001042 

p9 −0.0004184 1.056.106 −0.003739 −0.003732 

p10 0.008147 8.648.106 0.07354 0.07347 

G
oo

dn
es

s 
of

 fi
t  

SSE 2.936.10-5 1.209.10-4 6.211.10-11 3.92.10-8 3.519.10-10 

R2 1 1 1 1 1 

Adj. R2 1 1 1 1 1 

RMSE 4.325.10-4 0.8947.10-3 4.55.10-6 2.514.10-5 2.309.10-6 

 
In TEDS template the overall function is described in a 

piecewise manner, each segment defined by an array of 
coefficients and powers. For example, a polynomial curve 
from table 2 may be described by  [(9, −5.91E−18), (8, 
5.69E−16), (7, 2.92E−14), (6, −2.46E−12), (5, −1.74E−10), 
(4, 1.18E−8), (3, −9.11E−8), (2, 4.38E−6), (1, −4.18E−4),  
(0, 8.14E−3)]. [(3,1),(2,5),(1,−2),(0,1)], where the numbers 
in parentheses are interpreted as (Curve Power, Curve 
Coefficient).  
 In order to achieve better accuracy, especially for more 
non-linear sensors, TEDS provides an alternative means of 
calibration and linearization. The calibration curve 
template specifies a multi-segment polynomial curve and 
each segment is bounded by sequential values of, closed 
below and open above [6, 7]. The implementation of this 
capability in the case of treated thermistor is shown in last 
three columns in Table 2. As can be seen from the 
numerical fit results that the SSE and RMSE statistics have 
values very close to zero. Therefore the parametric models 
of divided transfer characteristic of the thermistor much 
better fits the input data. 

 
V. CONCLUSION 

 
 The present paper suggests an systematic approach for 
implementing curve fitting models and methods in order to 
achieve equation that precisely describe sensor’s transfer 
function. The aim of such equation is to implement it in 
calibration TEDS template and in such a way to improve 
measurement accuracy. To proof usability of presented 
approach a number of equation for thermocouples, RTDs 

and thermistors have been achieved. As illustration 
experimental results from curve fitting of thermistor’s 
transfer characteristic is presented. The obtained parametric 
models are suitable for calibration and transfer functions in 
measurement system of non-electric quantities or for 
behavior modeling of various sensors. 
 This investigation has been carried out in the framework 
of the research projects № 091 НИ 109-07 and № Д002-
126/2008. 
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