
ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 79

EVALUATION OF WEB SERVICES IMPLEMENTATION FOR ARM-BASED
EMBEDDED SYSTEM

Mitko Petrov Shopov, Hristo Matev Matev, Grisha Valentinov Spasov

Department of Computer Systems and Technologies, Technical University of Sofia, branch
Plovdiv, 61 “St. Petersburg” Blvd., Plovdiv 4000, Bulgaria, phone: +359 32 659758, www:

http://net-lab.tu-plovdiv.bg/ , e-mail: {mshopov, gvs}@tu-plovdiv.bg, hristo.matev@gmail.com

The paper presents test-bed experiments for evaluation of Web services implementation
for ARM-based embedded system running embedded Linux 2.6. The gSOAP Web services
generation toolkit optimized for embedded devices is used. Security is also included in the
experiments with the use of SSL/TLS and WS-Security. Two Web services are developed for
the experiments: Echo and Temperature. They both are tested as a standalone application
and as a CGI application running in the context of Apache Web server. The services are
tested with gSOAP and .NET Web services clients. The presented work is in the scope of
Multi-tiered architectures for building Distributed Automation Systems (DAS) and suggests
one possible configuration of the automation tier.

Keywords: Distributed Embedded Systems, Web Services, gSOAP toolkit.

1. INTRODUCTION
One of the most promising trends from the recent years – the service oriented

architecture (SOA) is now emerging in the domain of distributed embedded systems.
One of the most important benefits of such a shift is the possibility to replace
traditional vendor specific solutions with popular open standards for communication
and to satisfy the arising need to connect distributed embedded devices within the
network of enterprise systems.

Although the resources and capabilities of embedded systems are continuously
increasing while their price continues to drop [1], the rate is not enough to fully apply
the popular enterprise technologies and protocols directly on embedded systems.
Thus, there is always a need for optimizations and implementation techniques to
achieve improved performance with minimal requirements [3].

Security is another issue that must not be ignored especially when exposing the
embedded systems directly on the Internet or inside the enterprise networks. Proven
solutions like SSL/TLS (Secure Socket Layer/Transport Layer Security) for transport
security or even recently issued standard for Web service security (WS-Security)
require a lot of processing power and may disrupt other tasks of embedded device.

This paper presents a test-bed performance evaluation of web services
implementation on ARM-based embedded system, built with the gSOAP toolkit [4].
Several scenarios are used in the evaluations: Apache CGI-based Web services –
standard and HTTPS; standalone Web services – no security, SSL/TLS, and WS-
Security.

ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 80

2. BACKGROUND AND RELATED WORK

2.1. Service oriented architecture and Web services
Service oriented architecture (SOA) is a paradigm aimed at organizing and

utilizing distributed capabilities that may be under the control of different ownership
domains. It provides a framework to build an autonomous and interoperable systems.
It is particularly significant for the domain of embedded systems, where the usage of
a high-level service-based communications infrastructure opens entirely new
perspectives. There are several ongoing projects [2, 6] aimed at proposing a variation
of SOA that takes under consideration the specific characteristics of embedded
systems [2, 6].

Web services are the most adopted technology for implementing SOA. They
constitute a group of XML-based standards (WSDL – Web Services Description
Language, SOAP – Simple Object Access Protocol, and UDDI – Universal
Description Discovery and Integration), designed for the communication of loosely
coupled, heterogeneous systems. Web Services allow application to application
communication. The SOAP protocol is used for message based and remote procedure
call (RPC) communications. It also defines the serialization of function’s parameters
in a completely system independent format and allow the exchange of every data that
could be serialized. WSDL is used to describe the services in a standard way. Most
existing toolkits have both tools to generate WSDL file from the sources and to
generate the skeleton code from a given WSDL file.

2.2. Multi-tier architectures
Multi-tier architectures provide many benefits over traditional client/server

architectures. A four tier model for building distributed automation systems is
presented in [8]. It consists of client, presentation, service, and automation tiers. The
automation tier is represented by embedded devices with a set of sensors and
actuators. To increase integration and to further abstract the communication of
automation tier with other tiers the functions of the embedded devices can be
provided as a set of Web services [8].

2.3. Web service generation toolkits – gSOAP
There is a long list of Web services generation toolkits available for use. Some of

the most popular are Apache Axis [11] (C/C++ and Java version), kSOAP (J2ME),
bSOAP (Grid applications), eSOAP, .NET Compact Framework, gSOAP [4], and etc
[5].

While AXIS is dominating in the desktop domain, gSOAP is one of the best
choices for the domain of embedded systems and the reasons for that are lying in its
design characteristics [3]:

• Performance enhancing strategies – uses XML predictive pull parsing
technique for efficient XML serialization. Avoids the overhead of message
exchanges through multiple protocol layer APIs;

ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 81

• Static proxy generation – reduces memory requirements and run-time
processing overhead;

• Scalability – achieved with the use of linear-time XML serialization
algorithms;

• Limit memory usage – dynamically allocating data only when necessary;
• Support for pure “C” code – essential for many embedded systems kernels and

system-oriented applications developed in “C”.
• The RPC compiler used generates compact code with small memory footprint;
• Full support for the basic set of Web services protocols with provisions for

building stand-alone (embedded) HTTP/HTTPS Web services.
The gSOAP toolkit is platform independent and includes a WSDL parser wsdl2h

and skeleton generating compiler soapcpp2. The only platform dependent module is
the run-time library stdsoap2. The development process begins with the creation of a
service header file based on the WSDL file. Next the gSOAP compiler is used to
populate needed code files. At run-time RPC calls are made on client side proxies [4].

2.4. Related work
In [7] the author introduces the idea of remote services for embedded systems.

The work focuses on three aspects: distribution, minimum embedded device
modification, and component-based development. Disadvantage of the proposed
solutions is the use of a special Service Description Markup Language (SDML) that
could be substituted by standardized SOAP and WSDL.

The authors of [10] in their work describe a test case scenario with gas
chromatograph using both embedded web server with CGI application and embedded
SOAP. The results show that applying SOAP services on embedded devices is not
only feasible, but desired because it will improve interoperability.

Schall et. al. [9] in their work are measuring round-trip delays to estimate the
performance of gSOAP and kSOAP implementations of the Google Web service
API. The results show that the gSOAP developed Web services performs faster and
with smaller deviations than the those developed with kSOAP.

3. EXPERIMENTAL RESULTS

3.1. Test-bed architecture and scenarios
The test-bed architecture consists of two PCs (Web services clients), embedded

device (Web services server), and microcontroller with temperature sensor. One of
the PCs (linux client) is running OS Debian Linux 2.6.18-4-686 and the other one
(windows client) – Windows XP Servicepack 2. They both are running on a machine
with Intel(R) Pentium(R) 4 CPU 3.00GHz and 1GB of RAM. The Web services
client on the linux client is developed with gSOAP toolkit and on the windows client
– developed with .NET Compact Framework.

The embedded device is development board from Olimex [12] with ARM9-based
200MHz processor, 32 MB external SDRAM, 2GB USB flash (OS runs from it), Fast
Ethernet port, running Linux 2.6 OS. The Web services are developed with gSOAP

ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 82

v.2.7.3 toolkit for Debian Linux. Packet capturer used in experiments is Wireshark
v.0.99.4. Test-bed architecture is shown on figure 1.

Figure 1: Test-bed architecture.

Two sample Web services are developed for the experiments: Echo services –
accepts a string and reply with that string and Temperature service that obtain and
return real-time temperature. Five different scenarios are used: Web services running
as standalone applications – with no security provisions, with SSL/TLS, and with
WS-Security; Web services running on embedded apache server as CGI applications
both HTTP and HTTPS.

3.2. Results
A series of experiments are carried out 101 times for each scenario and the

average delay and jitter are calculated. The deviation of the delay and the jitter from
its mean value is determined (see Table.1 – the values are in seconds and rounded).
Table 1: Minimal, average, and deviation values for delays and jitter.

Standalone
(no security)

Standalone
SSL/TLS

Standalone
WS-Security

Apache
(HTTP)

Apache
(HTTPS)

 Echo Temp Echo Temp Echo Temp Echo Temp Echo Temp
min 0,01 3,89 0,43 3,90 0,35 4,23 0,07 3,94 0,11 3,98

average 0,01 3,89 0,44 3,91 0,37 4,27 0,14 3,97 0,22 4,03

de
la

y

deviation 0,79 1,72 3,21 1,83 3,06 5,08 3,70 2,41 4,92 9,59
min -0,01 -0,01 -0,02 -0,01 -0,02 -0,02 0,00 0,00 0,00 0,00
max 0,00 0,02 0,02 0,02 0,03 0,03 0,10 0,20 0,09 0,31

average 0,00 0,00 0,00 0,00 0,00 0,00 -0,18 -0,09 -0,17 -0,30jit
te

r

deviation 1,08 2,57 4,25 2,92 4,13 5,58 5,32 3,68 7,24 14,55

The scenario with WS-Security gives around 90% of message overhead from the
security header included in the SOAP message. The tests are made only for short
exchanged values like measured temperature. For longer exchanged values the
overhead should be lower because the security header should not increase
significantly.

ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 83

The delay is measured at the Packet level and is calculated as the time between
the first SYN packet sent from the client and the last ACK received from the server.
Application level measurements are also made, but for .NET clients only and are not
included in the comparisons. The Figure 2 gives a notion of delay introduced by
different scenarios.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

No Security SSL/TLS WS-Security Apache - no
security

Apache
SSL/TLS

[s
ec
]

Echo Temperature

Figure 2: Average delays for two sample web services and all five scenarios.

The Apache-based SSL/TLS scenario outperform standalone scenario for the
Echo service, but perform worse for the Temperature service. The reason for that
could be in the way Apache handles serial port communication and that the
standalone version does not include any special optimization. As could be expected
the WS-Security performs worst. For the Temperature services it has the highest
delay and for the Echo service is almost the same as for the standalone SSL/TLS.

4. CONCLUSIONS AND FUTURE WORK
The results from the experiments show that running Web services on embedded

devices is feasible. Remark has to be made that the experiments included no
optimization strategy and the Web service generation toolkit was used as it is
available in the public domain. This gives possibility to further enhancements
especially if commercial solutions are used.

Introducing state of the art Internet technologies in the embedded systems domain
will increase interoperability between devices from different manufacturers and will
allow much deeper integration within the existing enterprise systems. However,
giving remote access to embedded devices must involve securing measures. The
results show that including security increases the delay, jitter and their deviation
values in times and so require additional optimizations.

The future work include thorough experiments involving different Web services
generation toolkits, different embedded devices and new variants of Web services

ELECTRONICS’ 2007 20 – 22 September, Sozopol, BULGARIA

 84

that will endorse more precise results.
5. ACKNOWLEDGEMENT
The work in this paper is supported by National Science Fund of Bulgaria,

projects – “ВУ-966/2005” and “MU-MI-1602/2006”.
6. REFERENCES
[1] Borriello, G., R. Want, “Embedded Computation Meets the World Wide Web”,
Communications of ACM, Vol. 43 №5, pp. 59-66, May 2000.
[2] Deugd S., R. Carroll, K. Kelly, B. Millett, and J. Ricker, “SODA: Service-Oriented Device
Architecture”, IEEE Pervasive Computing, vol. 5, no. 3, 2006, pp. 94-C3.
[3] Engelen, R. van, “Code Generation Techniques for Developing Light-weight XML Web
Services for Embedded Devices”, ACM SAC’04, March 14-17, 2004, Nicosia, Cyprus, pp.
854-861, ISBN:1-58113-812-1.
[4] Engelen, R. and K.Gallivan, “The gSOAP Toolkit for Web Services and Peer-To-Peer
Computing Networks”, Proc of the 2nd IEEE International Symposium on Cluster Computing
and the Grid (CCGrid2002), pages 128-135, May 21-24, 2002, Berlin, Germany.
[5] Govindaraju, M., A. Slominski, K. Chiu, P. Liu, R. Engelen, M. Lewis, “Toward
characterizing the performance of SOAP toolkits”, Proceedings. Fifth IEEE/ACM International
Workshop on 8 Nov. 2004 Page(s):365 – 372.
[6] Jammes, F., H. Smit. “Service-Oriented Paradigms in Industrial Automation, Industrial
Informatics”, IEEE Transactions on Volume 1, Issue 1, Feb. 2005 pp. 62 – 70.
[7] Jazdi, N., Component-based and Distributed Web Application for Embedded Systems,
International Conference on Intelligent Agents, Web Technology and Internet Commerce, 9-11
July 2001, Las Vegas, USA.
[8] Kakanakov, N., M. Shopov, I. Stankov, and G. Spasov, “Web Services and Data Integration
in Distributed Embedded Systems in Internet Environment”, International Review on
Computers and Software (IRECOS), vol. 1, no. 3, November 2006, pp.194-201, ISSN: 1828-
6003.
[9] Schall D., M. Aiello, S. Dustdar, “Web Services on Embedded Devices”, International
Journal of Web Information Systems (IJWIS), 2006.
[10] Topp, U., P. Müller, “Web based service for embedded devices”, Lecture Notes in
Computer Science, Volume 2593 / 2003, pp. 141 – 153, ISSN: 0302-9743.
[11] Apache Axis project’s website – http://ws.apache.org/axis/
[12] http://www.olimex.com/dev/cs-e930x.html

