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FFT gives satisfactory evaluation of amplitude spectrum only when the frequency of the 
fundamental is an integer (or very close to integer) multiple of frequency resolution. Usually 
we do not know precisely the frequency of the power converters feeding machines in electric 
drives. This is why we cannot adjust the frequency resolution during the measurements. The 
paper proposes three methods to improve the evaluation of the fundamental frequency and 
amplitude of a signal by FFT. In this way the advantages of FFT are preserved and the 
disadvantages are compensated by efficient techniques. The applications field of these 
techniques can be the power measurement in the electrical drives where the electrical 
machine is fed by frequency converters.  We outline that two of the three proposed methods 
are insensitive to the noise content of the signal. 
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1. INTRODUCTION 
The evaluation of the performance of an electrical load fed by industrial network 

claims the measure of voltages, currents and power. In this case the frequency of 
fundamentals (for voltages and currents) is known with a good precision, the very 
small variations of frequency have a reduce influence on the final results of measure.  
Usually a frequency resolution of 1Hz is good enough. The amplitude spectrum can 
be trusted because it is clean, without grid effect or leakage.  

If the load is fed by a voltage or current converter, the frequency of fundamental 
is unknown, even in cases where we try to keep it constant. The best example is 
offered by a speed control system in an electric drive with a.c. machines. The 
imposed value is the speed and the frequency of feeding voltages is a secondary 
parameter, anyway variable with the load torque. Now the frequency resolution of the 
data acquisition system is constant and impossible to match with the fundamental 
frequency. The amplitude spectrum is not clean and we cannot trust it. The 
discontinuities introduced by a finite record of signal produce leakage of spectral 
information, resulting in a discrete-time spectrum that is a smeared version of the 
original continuous-time spectrum.  

The paper proposes some methods to recover the true value of the signal 
parameters by using the same environment to acquire and post-process the data.  

2. PRESENTATION OF THE PROBLEM 
We consider a voltage or current signal that contains the fundamental harmonic 

 )2sin(2 111 ϕπ += tfAy  (1) 
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The signal is acquired with a sampling frequency fs and N samples, that is with a 
frequency resolution Nff s /=∆ . If the frequency f1 of the fundamental harmonic is 
not a multiple of frequency resolution ∆f we can write  

fkf ∆+= )(1 α  where )1,0(∈α  (2) 
Let us evaluate the error given by harmonic analysis when α takes different 

values. The Fourier Transform of the signal y1 with N samples is  

dttjtfAF
tN
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where ∆t is the time pitch. The real and imaginary components of the integral (3) are 
given below: 
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  Let us put the discrete „exploring frequency” ω in the form (5) where m is an 
integer  )2/,0( Nm∈  

mf ⋅∆⋅⋅= πω 2  (5) 
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we can transform (4) in the form: 
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For α = 0 both components of (7) have a zero limit except the case m = k where 
for Asm we obtain: 
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This means that at location m = k we’ll have the value A and everywhere m ≠ k, 
we’ll have zero. Of course, in this case the amplitude spectrum is very „clean” and 
the signal frequency fkf ∆⋅=1  is correctly evaluated. The phase (at the beginning 
point of the sampling) of the harmonic components fm ∆⋅  of the signal is wrong 
evaluated because ( )mm AcAs /arctan  gives an indetermination. Anyway LabView 
delivers in this case a continuous evolution of the wrong evaluated phase, perhaps 
conserving the idea that the phase „has to grow” anyway, as Fig.1 proves. 

In order to supply examples for our statements we’ll use as sample a sum of two 
sinusoidal signals with the same RMS value 1 and different frequencies: f1 and 3f1. 
The variation will be the value of f1 and sometimes a white noise. Let it be as 
example the frequency f1 = (20+α) Hz.  
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))20(32sin(2))20(2sin(2)( ttty απαπ +⋅⋅++=   (9) 
For α ≠ 0 the amplitude spectrum is no more „clean”, the actual frequency is 

„somewhere” between two adjacent (m = k and m = k + 1) locations where the 
detected amplitudes are much greater then the values in the vicinity. The actual 
amplitude A cannot be evaluated. The phase angle evaluation is better because 
Acm ≠ 0 and Asm ≠ 0. It has a monotonous evolution till m = k and a sudden jump of π 
radians to the location m + 1. This property can be used as identification criterion for 
the location m = k. Fig. 2 shows very clear this evolution for signal (9). In this case 
the frequency f1 = 20.2 Hz. 

    Because here 5,02,0 <=α  the amplitude ak at the location k + 1 = 21 (don’t 
forget that at location 1 we have the mean value of the signal!) is greater than ak + 1 
at the location 22. For frequency f2 = 60.6 Hz, 5,06,0 >=α  and the amplitude ak at 
the location 61 is smaller than the amplitude ak + 1 at the location 62. 

It is worth to outline that in both cases the location of the phase jump is indepen-
dent of the detected amplitude, and the phase jump is there where α would be zero. 

To calculate the evaluation’s error of the fundamental RMS A from (1) we built 
the RMS values ak and ak + 1 of the signal for m = k and m = k + 1 and α growing 
from 0 to 1. The two amplitudes are represented in Fig.3 for k = 20. The peak 
detector (a VI of LabView) will „find” the amplitude in the k + 1 location as 
representative for the signal y1 so long as α < 0.5, and the amplitude in the location 
k + 2 for α > 0.5. (Do not forget that at location 1, where k = 0, we find the mean 
value of the signal if it exists!) 

The maximum error of the evaluated amplitude appears when α ≈ 0.5 and it is 
great enough: 35%. The error and the evolution of the amplitudes ak and ak + 1 
against α are practically independent of frequency resolution ∆f. 

The ratio ρ of the amplitudes at the location k and k + 1 offers good information 
for the value of α. Despite the equation’s form, the evolution of ratio ρ is remarkably 
smooth as Fig.4 shows. 

A very close idea is presented in [1]. To obtain the value of α, the equation (10) 

Fig. 1. FFT spectrum of amplitude  
and phase for α = 0 

Fig. 2. FFT spectrum of amplitude  
and phase for α ≠ 0 
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can be solved by suitable methods. The calculated value of the ratio ρ = ak / ak+1 gives 
a vicinity where the iterative methods have a good convergence. 
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Equation (10) will be rearranged in the form: 
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It is useful to consider the variation of the second factor (with sqrt) of the 
equation (11). The amplitude of the variation is reduced against the variable α as we 
can see in Fig.5. Considering that the mean value of the variation has a good 
approximation in the final value for 1=α  we’ll obtain a simple equation for the α 
estimation. 

This equation, for 1=α  in the “sqrt” factor becomes: 
.

1
;

)2(
)12)(1(;

1)2(
)12)(1(

+
=

+
++−

=
++

++−
≅

k
kC

k
k

Ck
k

k
k

αα
ααρ

αα
ααρ  (12) 

The solution of the second order algebraic 
equation is given below. The error for k = 10 is 
about 1.45 % against the value given by (10). 
For higher values of k the error is smaller. 
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The most important problem remains the 
identification of k. This is why the study of the 
phase evolution for α ≠ 0 is very important. 

Fig. 3. The amplitude values given by a LabView 
peak detector for 0 < α < 1 

Fig. 4. Ratio  ρ = ak / ak+1 against α 

Fig. 5. The variation of the  
factor “sqrt” from (11) 
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The location k will appear before the phase jump! 
3. PROPOSED CORRECTION METHODS 
3.1. The use of Buneman frequency estimator  
If the data acquisition is done with LabView, it seems logical to look for a 

correction method among the LabView instruments. The frequency f1 of the 
fundamental y1 is the most important parameter to be determined. With the right 
value of frequency f1 we can use the well-known evaluation method of the signal’s 
amplitude by integration over the period T1=1/f1. The Buneman estimator of 
frequency is a Virtual Instrument (VI) of the LabView library. It calculates the 
successive frequencies of the sinusoidal components by using the results of FFT.  

 
The Buneman algorithm identifies two maximum values ak and ak+1 of a vicinity 

and their locations k and k + 1. For a given ∆f the unknown frequency f1B is calculated 

as:   f
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As we can see, the Buneman algorithm uses the information about a vicinity 
where the frequency f1 is found. The data of Table 1 can be used to verify the 
Buneman’s algorithm accuracy.  

In order to calculate the amplitude components for the real signal y1 we’ll use the 
equation (15) because the Buneman frequency offers the value of k and α. 

3.2. The use of pic detector and solving eq. (10)  
The amplitude and phase spectrum is obtained by the LabView VI that executes a 

FFT of the input signal. 

 
The amplitude spectrum is analysed by a peak detector, another VI of LabView 

that gives the locations and values of successive peaks of amplitudes. The first peak 
is supposed to belong to the fundamental. In order to verify the actual position of the 

fk ∆⋅  frequency for α = 0 we’ll examine the phase spectrum in the near of peak’s 
location.  

 
The phase jump will give the right value of the k location. Then we can calculate 

the ratio ρ and evaluate the right value for α with (13) and the unknown frequency 
( ) fkf x ∆⋅+= α . The actual rms value of the unknown amplitude will be calculated 

using the equation: 
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The procedure is repeated for all peaks that belong to the higher harmonics of the 
signal, or to another waves contained in the signal. 

4. EXPERIMENTAL RESULTS 
Three LabView programs were built, one for each proposed method. The same 

signal was analised by all the programs. The errors for recovered amplitudes and 
frequencies were compared in order to evaluate the efficiency of the proposed 
methods. 

The use of Buneman frequency estimator  
 The precision of the method is very good. In the presence of noise the frequency 

recovery is very good and the error for amplitude recovery is satisfactory, around 1–
1.5 %, dependent on the noise amplitude and type (Gaussian, white noise). 

The use of pic detector and solving eq. (10) 
The method gives practically the same precision for the frequency and amplitude 

recovery, but is sensitive to the noise because the corrupted phase spectrum by noise. 
Repeated FFT with different number of samples N” 
The precision of the method is good. The advantages of the method are simplicity 

and immunity to noise. 
5. CONCLUSIONS 
The paper proposes three methods to improve the evaluation of the fundamental 

frequency and amplitude of a signal by FFT. In this way the advantages of FFT are 
preserved and the disadvantages are compensated by efficient techniques. 

The applications field of these techniques can be the power measurement in the 
electrical drives where the electrical machine is fed by frequency converters. 

With some additional work the ideas can be applied in the measurement of active 
power of all voltage and current harmonics of the same order. 

We outline that two of the three proposed methods are insensitive to the noise 
content of the signal. 
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