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This paper shows the implementation and measurement result of a recently designed 
switched-capacitor dynamic- element- matching amplifier. The main advantage of this 
amplifier concerns it immunity against input common-mode voltages. As compared with a 
previous design, the performance of the circuit has been improved by optimizing the design of 
the switches and by extending the auto-calibration procedure to two different offset 
measurements. For an experimental evaluation, a test chip has been designed and realized in 
0.7μm CMOS technology. The experimental result shows 1.4μV input referred noise for a 
measurement time of 40 ms, which is close to the calculated value. A very high immunity 
against input common-mode voltages has been found. However, the non-linearity over the full 
input-voltage range is only 0.27%.    
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1. INTRODUCTION 
In conventional measurement systems, major systematic-error sources are related 

to offset and parameters drift by temperature and aging. However, the use of 
advanced techniques such as chopping and three-signal auto-calibration will 
eliminate the effects of any systematic additive (offset) and multiplicative (gain) 
uncertainties [1]. To achieve this, the core processing circuit should be designed with 
a high degree of linearity for the relevant input range. Therefore, before applying the 
input signal to the main circuit, it is necessary to scale its size to an appropriate range. 
Depending on the signal levels, a voltage divider or an amplifier will be needed. 
Because these pre-scaling circuits are outside of the auto-calibration path, any 
inaccuracy in the scaling factor will affect the accuracy of the whole system. Because 
the offset of a pre-scaling circuit can still be eliminated, the inaccuracy of the scaling 
factor is the main concern. 

Nowadays, the most accurate amplifiers are realized by applying negative 
feedback (by means of passive element) around an active gain stage. Then, the 
accuracy of the transfer function is limited by the matching properties of the feedback 
elements. 

The best method for designing amplifier with accurate gain is using Dynamic-
Element-Matching Feedback [2]. In the following sections a short summary of these 
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measurement techniques will be presented. Afterwards the details and experimental 
result of the optimized design will be presented. 

2. INSTRUMENTATION AMPLIFIER WITH DYNAMIC-ELEMENT-MATCHING 
FEEDBACK 

In [2], [3] an instrumentation amplifier with resistive dynamic-element-matching 
(DEM) feedback has been presented. The main problem of this circuit concerns its 
limited common-mode range. However, in [4] a Switched-Capacitor - DEM 
Amplifier (Figure 1) has been presented, that can handle rail-to-rail common mode 
voltage. On each cycle, N-1 equal capacitors (equal in layout, but in reality showing 
some mismatches) are connected to the input and the remaining capacitor is 
connected to the output. After a complete cycle of interchanging the capacitors, the 
average gainG  over N clock cycles equals N-1. 

In first order this gain is independent of mismatching [5] and equals: 
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In this equation δj is the relative 
mismatching between the capacitors 
with respect to the average value. There 
is some leakage current at the inverting 
input of the amplifier, so we need a reset 
to prevent excessive drift at the output. 
The core processing system that we use 
converts the voltages to periods and 
measures the periods with a micro-
controller. Therefore, it can do 
averaging without any extra needs. The main problem of this circuit is that switch-
charge injection causes noise and inaccuracy. The performance of the circuit has been 
improved by optimizing the switch geometries for a minimum charge injection and 
an acceptable ON resistance Ron.  
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Fig. 1. Switched-Capacitor Dynamic-Element-
Matching Amplifier (SC-DEM Amplifier). 

3. EXTENDED AUTO CALIBRATION 
In the original three-signal measurement [1], only a single offset measurement is 

performed. However, due to voltage dependency of the capacitor and the use of two 
different choppers, which were needed for some practical reasons, the offset voltages 
slightly depend on whether or not an amplifier is used. Also this offset depends on 
the common-mode voltage. Therefore, it is better to apply an offset measurement for 
each of the applied configurations. This can be explained with the help of Figure 2, 
which shows the applied extended auto calibration. 

The four different signals are measured in the following way: 
In phase 1, the switches S1 and S3 are ON and the other switches are OFF.  In this 

case we convert Vx to Tx, where: 
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1 x offxT T KAV T= = + 1

2

.                                                                                   (2) 
In this equation K and Toff1 represent the gain and the offset of voltage-to-period 

converter, and A is the gain of our amplifier. 
In phase 2, the switches S1 and S4 are 

ON and the other switches are OFF. Then 
it holds that 
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Fig. 2. (a) The configuration for auto-
calibration and (b) the output signal, which 
consists of four concatenated periods. 

2 off1T T= .                                  (3) 
In phase 3, the switches S2 and S5 are 

ON and the other switches are OFF, 
which yields that 

3 ref ref offT T KV T= = + .                      (4) 
In Phase 4, the switches S2 and S6 are 

ON and the other switches are OFF. So in 
this phase we can measure Toff2: 

4 off2T T= .                                            (5)  
Therefore we can calculate M with equation: 
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When knowing Vref and after measuring M we can calculate Vx according to the 
equation: 

ref
x

MVV
A

= .                                                                                     (7) 

In this equation we suppose that the gain is 7. 
During testing, when applying known voltages Vref and Vx and measuring M, we 

can calculate the amplification factor with the equation: 
ref

x

MVA
V

= .                                                                                     (8) 

As it can be seen the measured M and so Vx and A are independent of additive and 
multiplicative errors of the voltage- to-period converter. 

4. MEASUREMENT RESULTS 
The improved design has been 

realized in 0.7μm CMOS technology of 
AMIS (Fig. 3). 

We measured the different periods of 
the chip output using a micro-controller 
(for identification purposes the 
frequency of Toff2 is twice that of the 
rest). The data is read via a serial port 
(RS232) and transferred to a PC, where 
the data is analyzed with a Labview 
program.  

 
Fig. 3. Photograph of the 2000μm ×1800μm 
chip. 
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From that, we calculate the voltage-to-time transfer functions Hx and Href with the 
following equations: 

1x off
x
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In our setup it holds that Hx = 434 μs/mV and Href = 62 μs/mV. For the standard 
deviation of these periods we found:

 
1( ) 0.6μs
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2( ) 0.2μs
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 We can transform these jitters to input referred noise according to the equations: 
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The results are 1.4 μV and 3.2 μV for Vn,x and Vn,ref, respectively. Comparing the 
values of Vn,x and Vn,ref it can be concluded, that the amplifier improves the VPC 
resolution with more than one bit. At the cost of more power consumption it would 
be possible to increase the resolution even more.  

Figure 4 shows the measured voltage Vx,measured for     Vx = 4.088mV, Vref = 46mV, 
and a measurement time of 40 ms. The average measured value is 4.093mV, 
corresponding to A= 7.008. The standard deviation amounts to 1.4 μV. 
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Fig. 4. Measurement result for Vx = 4.088 mV Fig. 5. Gain versus input voltage 

In order to measure the gain of the amplifier with respect to the input voltage, we 
performed two measurements. In the first measurement, we applied a constant 
voltage as Vref. In the second measurement, we changed the value of Vref in such a 
way that always Vref = 7Vx, so that at the input of the VPC, for the Vx and the Vref 
measurements, the voltages are equal. So, in the second measurement, the non-
linearity of the voltage-to-period converter (VPC) is eliminated by auto-calibration 
and the measured non-linearity is due to the amplifier only. In the first measurement 
the non-linearity is related to the whole system.  

The results are shown in the Fig. 5. 
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For input voltages Vx<25mV, both measurements give similar results, which shows 
that the amplifier non-linearity is dominant in the overall system non-linearity. 
However, for Vx>25mV, between the two curves a significant difference is found. 
This is due to saturation of the integrator in the VPC, which causes an increasing 
system non-linearity, which is measured in the first measurement. 

For input voltages V

Therefore, we use 25mV as the maximum value of the dynamic range. If we 
define the worst-case non-linearity as: 

Therefore, we use 25mV as the maximum value of the dynamic range. If we 
define the worst-case non-linearity as: 

x<25mV, both measurements give similar results, which shows 
that the amplifier non-linearity is dominant in the overall system non-linearity. 
However, for Vx>25mV, between the two curves a significant difference is found. 
This is due to saturation of the integrator in the VPC, which causes an increasing 
system non-linearity, which is measured in the first measurement. 
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Fig. 6. Measurement gain variations for Vx = 
4.088 mV and varying common-mode voltage 
Vic

Then, for a full-range of 25mV, the 
non-linearity λ amounts to 0.27%. 
Usually, for low-sensitivity 
thermocouples, such as the types B, R, 
and S, such non-linearity is too large. At 
this moment, the reasons for this non-
linearity are not yet fully understood and 
are under investigation.     

To test the effect of the input 
common-mode voltage Vic on the 
amplification factor, we changed the 
input common-mode voltage from 0V to 5V, with a step of 0.5V, and measured the 
gain of the amplifier for Vx=4.088mV, with one and two offset measurements, 
respectively (Fig. 6). 

From Fig. 6 we can see two distinctive advantages of the two-offset measurement 
in comparison with one-offset measurement. Firstly, the effect of the input-common-
mode voltage on the amplification factor is much less and secondly, the gain is much 
closer to the designed value of 7. The first advantage is independent of the input 
voltage Vx, however, the second advantage is only valid for Vx<10mV (for signals to 
be amplified, this is the most important part the input voltage range).  

5. CONCLUSION 
A SC-DEM amplifier as well as a voltage-to-period converter has been optimized, 

which resulted in a significant reduction of the noise level of the interface circuit. To 
improve the common-mode rejection of the system, an extension of the auto-
calibration technique with an additional offset measurement has been proposed. The 
amplifier has been designed and realized in a 0.7  CMOS process. Measurements 
show 1.4 μV input referred noise for a measurement time of 40 ms, which for a 
thermocouple interface is rather good. The relative gain variations due to the input 
common-mode voltage are less than 0.01%. However, the 0.27% non-linearity of the 
gain over full dynamic range of the desired input-signal is too high to be tolerated. 
The reasons for this non-linearity are not yet fully understood and are under 
investigation.   

μm
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1. Introduction


In conventional measurement systems, major systematic-error sources are related to offset and parameters drift by temperature and aging. However, the use of advanced techniques such as chopping and three-signal auto-calibration will eliminate the effects of any systematic additive (offset) and multiplicative (gain) uncertainties [1]. To achieve this, the core processing circuit should be designed with a high degree of linearity for the relevant input range. Therefore, before applying the input signal to the main circuit, it is necessary to scale its size to an appropriate range. Depending on the signal levels, a voltage divider or an amplifier will be needed. Because these pre-scaling circuits are outside of the auto-calibration path, any inaccuracy in the scaling factor will affect the accuracy of the whole system. Because the offset of a pre-scaling circuit can still be eliminated, the inaccuracy of the scaling factor is the main concern.


Nowadays, the most accurate amplifiers are realized by applying negative feedback (by means of passive element) around an active gain stage. Then, the accuracy of the transfer function is limited by the matching properties of the feedback elements.


The best method for designing amplifier with accurate gain is using Dynamic-Element-Matching Feedback [2]. In the following sections a short summary of these measurement techniques will be presented. Afterwards the details and experimental result of the optimized design will be presented.


2. Instrumentation Amplifier with Dynamic-Element-Matching Feedback


In [2], [3] an instrumentation amplifier with resistive dynamic-element-matching (DEM) feedback has been presented. The main problem of this circuit concerns its limited common-mode range. However, in [4] a Switched-Capacitor - DEM Amplifier (Figure 1) has been presented, that can handle rail-to-rail common mode voltage. On each cycle, N-1 equal capacitors (equal in layout, but in reality showing some mismatches) are connected to the input and the remaining capacitor is connected to the output. After a complete cycle of interchanging the capacitors, the average gain

[image: image1.wmf]G


 over N clock cycles equals N-1.


In first order this gain is independent of mismatching [5] and equals:
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In this equation (j is the relative mismatching between the capacitors with respect to the average value. There is some leakage current at the inverting input of the amplifier, so we need a reset to prevent excessive drift at the output. The core processing system that we use converts the voltages to periods and measures the periods with a micro-controller. Therefore, it can do averaging without any extra needs. The main problem of this circuit is that switch-charge injection causes noise and inaccuracy. The performance of the circuit has been improved by optimizing the switch geometries for a minimum charge injection and an acceptable ON resistance Ron. 


3. Extended Auto Calibration


In the original three-signal measurement [1], only a single offset measurement is performed. However, due to voltage dependency of the capacitor and the use of two different choppers, which were needed for some practical reasons, the offset voltages slightly depend on whether or not an amplifier is used. Also this offset depends on the common-mode voltage. Therefore, it is better to apply an offset measurement for each of the applied configurations. This can be explained with the help of Figure 2, which shows the applied extended auto calibration.


The four different signals are measured in the following way:


In phase 1, the switches S1 and S3 are ON and the other switches are OFF.  In this case we convert Vx to Tx, where:
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In this equation K and Toff1 represent the gain and the offset of voltage-to-period converter, and A is the gain of our amplifier.


In phase 2, the switches S1 and S4 are ON and the other switches are OFF. Then it holds that
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In phase 3, the switches S2 and S5 are ON and the other switches are OFF, which yields that
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In Phase 4, the switches S2 and S6 are ON and the other switches are OFF. So in this phase we can measure Toff2:
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Therefore we can calculate M with equation:
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When knowing Vref and after measuring 
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we can calculate Vx according to the equation:
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In this equation we suppose that the gain is 7.


During testing, when applying known voltages Vref and Vx and measuring M, we can calculate the amplification factor with the equation:




[image: image10.wmf]ref


x


MV


A


V


=


.



                                                                                 (8)


As it can be seen the measured M and so Vx and A are independent of additive and multiplicative errors of the voltage- to-period converter.
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4. Measurement Results


The improved design has been realized in 0.7(m CMOS technology of AMIS (Fig. 3).


We measured the different periods of the chip output using a micro-controller (for identification purposes the frequency of Toff2 is twice that of the rest). The data is read via a serial port (RS232) and transferred to a PC, where the data is analyzed with a Labview program. 


From that, we calculate the voltage-to-time transfer functions Hx and Href with the following equations:
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In our setup it holds that Hx = 434 μs/mV and Href = 62 μs/mV. For the standard deviation of these periods we found:
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We can transform these jitters to input referred noise according to the equations:
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The results are 1.4 μV and 3.2 μV for Vn,x and Vn,ref, respectively. Comparing the values of Vn,x and Vn,ref it can be concluded, that the amplifier improves the VPC resolution with more than one bit. At the cost of more power consumption it would be possible to increase the resolution even more. 


Figure 4 shows the measured voltage Vx,measured for     Vx = 4.088mV, Vref = 46mV, and a measurement time of 40 ms. The average measured value is 4.093mV, corresponding to A= 7.008. The standard deviation amounts to 1.4 μV.




[image: image17.wmf]Measured voltage  for 


V


x


 =4.088mV





4.089


4.090


4.091


4.092


4.093


4.094


4.095


4.096


4.097


0


50


100


150


N


V


x,measured






[image: image18.wmf]Non-linearity of SC-DEM Amplifier
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Fig. 4. Measurement result for Vx = 4.088 mV

Fig. 5. Gain versus input voltage



In order to measure the gain of the amplifier with respect to the input voltage, we performed two measurements. In the first measurement, we applied a constant voltage as Vref. In the second measurement, we changed the value of Vref in such a way that always Vref = 7Vx, so that at the input of the VPC, for the Vx and the Vref measurements, the voltages are equal. So, in the second measurement, the non-linearity of the voltage-to-period converter (VPC) is eliminated by auto-calibration and the measured non-linearity is due to the amplifier only. In the first measurement the non-linearity is related to the whole system. 


The results are shown in the Fig. 5.

For input voltages Vx<25mV, both measurements give similar results, which shows that the amplifier non-linearity is dominant in the overall system non-linearity. However, for Vx>25mV, between the two curves a significant difference is found. This is due to saturation of the integrator in the VPC, which causes an increasing system non-linearity, which is measured in the first measurement.

Therefore, we use 25mV as the maximum value of the dynamic range. If we define the worst-case non-linearity as:
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Then, for a full-range of 25mV, the non-linearity λ amounts to 0.27%. Usually, for low-sensitivity thermocouples, such as the types B, R, and S, such non-linearity is too large. At this moment, the reasons for this non-linearity are not yet fully understood and are under investigation.  




To test the effect of the input common-mode voltage Vic on the amplification factor, we changed the input common-mode voltage from 0V to 5V, with a step of 0.5V, and measured the gain of the amplifier for Vx=4.088mV, with one and two offset measurements, respectively (Fig. 6).


From Fig. 6 we can see two distinctive advantages of the two-offset measurement in comparison with one-offset measurement. Firstly, the effect of the input-common-mode voltage on the amplification factor is much less and secondly, the gain is much closer to the designed value of 7. The first advantage is independent of the input voltage Vx, however, the second advantage is only valid for Vx<10mV (for signals to be amplified, this is the most important part the input voltage range). 


5. Conclusion


A SC-DEM amplifier as well as a voltage-to-period converter has been optimized, which resulted in a significant reduction of the noise level of the interface circuit. To improve the common-mode rejection of the system, an extension of the auto-calibration technique with an additional offset measurement has been proposed. The amplifier has been designed and realized in a 0.7
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 CMOS process. Measurements show 1.4 (V input referred noise for a measurement time of 40 ms, which for a thermocouple interface is rather good. The relative gain variations due to the input common-mode voltage are less than 0.01%. However, the 0.27% non-linearity of the gain over full dynamic range of the desired input-signal is too high to be tolerated. The reasons for this non-linearity are not yet fully understood and are under investigation.  
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Fig. 1. Switched-Capacitor Dynamic-Element-Matching Amplifier (SC-DEM Amplifier).�
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Fig. 2. (a) The configuration for auto-calibration and (b) the output signal, which consists of four concatenated periods.�
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Fig. 3. Photograph of the 2000μm (1800μm chip.�

�









� EMBED Excel.Chart.8 \s ����

�

Fig. 6. Measurement gain variations for Vx = 4.088 mV and varying common-mode voltage Vic
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