
ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 

MAPPING OF GENERIC OPEN INTERFACES TO NETWORK PROTOCOLS  

Hristo E. Froloshki, Evelina N. Pencheva 

Department of Telecommunications, Technical University – Sofia, “Kliment Ohridski” Blvd. 8 
1000, Sofia, Bulgaria, phone: (+359) (2) 965 2134, e-mail: hef@tu-sofia.bg, enp@tu-sofia.bg  

The paper presents a mapping of Parlay/Open Service Access (OSA) Application 
programming interfaces (APIs) onto underlying network protocols like ISDN user part 
(ISUP), CAMEL application part (CAP) and Session initiation protocol (SIP). The focus is on 
Call control API enabling third party applications to interfere in creation, manipulation, 
termination and teardown of communication sessions.  

Keywords: Open service access, Call control, SIP, CAP, ISUP 

1. INTRODUCTION 
Next generation networks bring the promise for a multitude of attractive services, 

satisfying subscriber’s needs. Various networking technologies are expected to 
cooperate and deliver valuable solutions. Industrial leaders in IT and telecommu-
nication sectors apply the proved concept of layering to the process of application 
accessing network services. The concept is brought to life by 3rd generation 
partnership project consortium in the form of application programming interfaces 
(APIs), known as Parlay/OSA (Open Service Access). Each API is aimed at specific 
network functionality called service capability such as call-control, user interaction, 
mobility, data session control, network management, etc. OSA APIs provide applica-
tion developers with programmability of network resources defining them in terms of 
objects with methods, data types and parameters on which they operate. 

Present paper focuses on call-control API, and in particular its generic call control 
part, since it has heavy impact on all services, requiring application intervention in 
call creation, manipulation, termination and teardown. Third party applications are 
able to setup a communication sessions or play scheduled announcements to subscri-
bers of these networks. Some of the important call control API methods are consider-
ed and brief overview of their meaning for voice-carrying networks such as circuit 
switched or packet switched telephony is performed. Suggestions for mapping 
between OSA API methods and underlying network protocol messages are presented 
as well. Then validation of the proposed concept is done through functional model of 
a software entity, capable of translating between Parlay/OSA application servers and 
voice networks, employing ISUP (ISDN user application part) and SIP (Session 
initiation part) signaling protocols. A brief overview is made for CAMEL (Customiz-

88 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 
ed application for mobile services enhanced logic) enabled mobile networks, where 
mapping is given in [1] and telephony networks structured as intelligent one [2]. 

2. CALL CONTROL API AND EXPOSED NETWORK FUNCTIONALITY 
Originally the Parlay/OSA APIs are intended for exclusive use in third generation 

mobile networks. However the 3GPP standards are open by design and allow expan-
sion toward fixed telephony networks. In previous works call control objects, defined 
by the API were discussed [3], while here the stress is on implications of mapping the 
API’s methods on network-specific protocols and the nodes, who understand them. 

A primary functionality required by the call control API is a mechanism for trans-
porting notifications about the states in call for a particular subscriber. This informa-
tion allows service logic (residing in application server) to control the call (put it on 
hold, redirect, play a wakeup message and so on), bringing more value to the subscri-
ber. Call related information in circuit switched networks structured as intelligent 
ones is accessible through INAP (Intelligent Network Application Part) protocol. 

Another key functionality is the option for load-control, requested by application. 
The most important reason for this is to keep processing load of both the application 
server and the Parlay gateway within reasonable limits - otherwise there is a risk for 
failing the execution of services and/or degrading quality of service parameters. 

The API enables applications to obtain timing information, useful for service deli-
very, such as: starting time of call, end time of call, time of connection to a resource, 
etc. It should be noted that this is possible if the underlying network (whose resources 
are abstracted) supports these parameters, for example mobile network supporting 
CAMAL application part (CAP). On contrary with circuit switched networks, SIP-
based telephony networks do not provide call-related timing information. To provide 
this sort of information the implementation of SIP proxy has to consider the necessity 
of collecting call information. 

Last, but not least is the feature, allowing application to request the routing of a 
call from originating to destination address. Here the API is influenced by options, 
provided by INAP and CAP messages, while SIP at first glance satisfies partially the 
required functionality (concerning services such as redirect or mid-call digit entry). 
This leads to the conclusion that some services will not be portable across different 
types of networks. As suggested in [4] there are certain mechanisms in SIP to trans-
port information, related with mid-call services, but these are left to be implementa-
tion specific, which contradicts the founding idea of Parlay – to present generic 
network services, to application servers. 

3. MAPPING API METHODS ON NETWORK PROTOCOLS PROCEDURES 
The paper considers only a fraction of API’s methods, since not all are appropriate 

for translation to underlying networks. As illustration for this statement let’s consider 

89 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 
load control feature, requested by application. In CAP enabled mobile network this 
translates into call gap procedure, while in SIP network, this must be implemented in 
internal proxy routine. This section focuses on some methods defined for IpCallCont-
rolManager and IpCall objects and their mappings on CAP, INAP, ISUP and SIP.  

3.1 CAP Mapping 
The most important methods for IpCallControlManager are enable(disable)Call-

Notification used for declaring the application interest in states of a call. These are 
translated as Mobile application part messages AnyTimeModification and obtain 
CAMEL subscriber information. Actual call state information is transferred through 
callEventNotify method, which extracts it from the CAP InitialDP message. Consider-
ed IpCall methods are RouteReq – to actually setup a call the application invokes the 
method, which in turn is translated to CAP connect message. It carries all the necessa-
ry information for the service switching point. Here should be noted that RouteReq 
method assumes translation to different CAP messages (CAP Connect, Continue and 
ContinueWithArgument), depending on the method provided values. CAP EventRe-
portBCSM message carries the type of event, detected in the mobile network. Its 
translation is invocation of RouteRes method, implemented by IpAppCall object on 
the application side. If the call state is disconnected, the called API method is callEnd-
ed. DeassignCall method is translated as CAP Cancel or Continue to indicate that the 
application is no longer interested in controlling the call. GetCallInfoReq is mapped 
on CAP CallInformationRequest in order to provide call related timing information.  

3.2 ISUP Mapping 
Direct mapping to ISUP is possible, but advantages gained from it are minor when 

compared with rise in requirements and complexity of network servers. This section 
presents some assumptions for such mapping and uses the approach used in [5] – 
direct mapping of the call control API on call setup signaling protocol (SIP). It was 
mentioned above for IpCallControlManager requirements in terms of call event 
notifications, which should be maintained by a call state machine, implemented in the 
network server itself. In contrast CAP and INAP do not pose such requirement for the 
network server – the basic call state model is implemented in the switch and call state 
information is transported by the two protocols (CAP and INAP). Functional mapping 
is the only way to translate the call control API in ISUP messages – this means intro-
duction of new nodes or at least new functionality in the fixed telephony network. 
These ideas apply for the other considered object – IpCall – some of its methods 
indeed have direct translation (routeReq – IAM, release/callEnded – REL), while 
others (deassignCall, routeRes, getCallInformation) require availability of basic call 
state model implementation within the network server. 

90 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 

3.3 SIP Mapping 
SIP has gained enough momentum in its development and deployment to be 

considered as a viable candidate for extension toward IN services (for the cases where 
these services are required in heterogeneous environments). [4] offers architecture for 
IN enabled SIP proxy, capable of processing INAP messages. There is also mapping 
between states in the two basic call state models concerning originating and termina-
ting part and the SIP state machine, enabling provision of SIP call states through 
INAP. Availability of SIP call-state model makes it possible for Parlay/OSA applica-
tions to request services from a SIP proxy in a generic way. [5] offers architecture 
where the SIP user agent functionality is accessible directly through OSA servers. The 
difference between two approaches, is that in the first case intermediary protocol is 
used to deliver state information, from SIP server supporting call state machine, while 
the latter uses direct mapping, also assuming that the SIP server supports call state 
machine. There is no doubt that call state machine is needed in order to provide IN 
services, but a question arises: do we need the intermediate functions of INAP? The 
answers are yes – where we expect mixed environments and no – for entirely IP-based 
networks. Furthermore, the API is more “friendly” toward INAP than SIP. 

Mapping of Call Control Manager’s methods poses few difficulties when consi-
dering SIP network architecture. EnableCallNotification method requests subscription 
for call-related events, associated with SIP. [4] offers partial solution because events 
are detected and reported before the active state. SIP supports hold service, but the 
real problem with the active state is the transfer of information (such as dialed digits) 
or implementing a service as redirecting the active call on another address. The reason 
for this “disability” is that SIP proxy servers do not control the media stream. 
Methods in IpCall also present some ambiguity – RouteReq may translate into Invite 
message, but some parameters, concerning services such as call divert or call redirect 
do not have SIP equivalents, and need to be mapped functionally (which is possible if 
we consider the intelligent network service call divert and the functionality of a 
redirect server). Method deassignCall can be implemented internally for the INAP-
enabled SIP proxy. Release is mapped on a Bye message. Methods for collecting 
timing information for a call also should be implemented internally. 

4. PARAMETER MAPPING 
This section gives the resulting parameter mappings for INAP, ISUP and SIP. For 

some API methods there are no direct corresponding messages and some assumptions, 
described in previous section are applied. Tabl.1, tabl.2, tabl.3 summarize mapping of 
Generic Call Control (GCC) API on to INAP, ISUP and SIP protocols correspond-
ingly. 

91 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 

Tab.1. Mapping GCC API to INAP 

GCC 
object 

Method Parameters INAP 
Procedure 

INAP Parameter 

IpCall routeReq() targetAddress 
originatingAddress 
originalDestinationAddress 
redirectingAddress 

Connect destinationRoutingAddress 
callingPartyAddress 
originalCalledPartyID 
redirectingPartyID 

IpApp-
Call 

routeRes() eventReport EventReportB
CSM 

eventTypeBCSM 
eventSpecificInformationB
CSM 

IpCall release() callSessionID 
cause 

ReleaseCall initialCallSegment 
Cause 

IpCall Deassign-
Call() 

callSessionID - Internal implementation  
for SCS 

IpCall getCallInfo-
Req() 

callInfoRequested CallInforma-
tionRequest 

requestedInformationType
List 

IpCall 
Control 
Manager 

setCallLoad
Control 

Duration 
address range 

Call Gap  GapIndicators 
calledAddressValue 

 

Tab.2. Mapping GCC API to ISUP 

GCC 
object 

Method Parameters ISUP 
Message 

ISUP Parameter 

IpCall routeReq() targetAddress 
originatingAddress 
originalDestinationAddress 
redirectingAddress 

Initial 
Address 
Message 

Called party number 
Calling party number 
Original called number 
Redirecting number 

IpAppCal
l 

routeRes() eventReport N/A N/A 

IpCall release() callSessionID 
cause 

Release 
Message 

Cause indicators 

IpCall deassignCall
() 

callSessionID - Internal implementation  
for SCS 

IpCall getCallInfo
Req() 

callInfoRequested - Internal implementation  
for SCS 

IpCall 
Control 
Manager 

setCallLoad
Control 

Duration 
address range 

- Internal implementation  
for SCS 

 

92 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA 
 

Tab.3. Mapping GCC API to SIP 

GCC 
object 

Method Parameters SIP method SIP Parameter 

IpCall routeReq() targetAddress 
originatingAddress 
originalDestination-
Address 
redirectingAddress 

Invite 
 
Redirect 

To: 
From: 
To: 
N/A 

IpApp-
Call 

routeRes() eventReport EventReportBC
SM 
(INAP-enabled 
SIP proxy) 

eventTypeBCSM 
eventSpecificInformationB
CSM 

IpCall release() callSessionID 
cause 

ReleaseCall 
(INAP-enabled 
SIP proxy) 

initialCallSegment 
Cause 

IpCall Deassign-
Call() 

callSessionID - Internal implementation  
for SCS 

IpCall getCallInfo-
Req() 

callInfoRequested  Internal implementation  
for SCS 

IpCCl 
Manager 

setCallLoadC
ontrol 

Duration 
address range 

 Internal implementation  
for SCS 

5. CONCLUSIONS 
The paper presents results of thorough analysis of OSA open interfaces applicabi-

lity in circuit and packet switched networks. A mapping of OSA Call Control methods 
onto CAP, INAP, ISUP and SIP network is done. The analysis points that SIP-based 
telephony networks do not support the whole OSA call control functionality - it is up 
to implementation of SIP servers to provide it. Enhancing SIP call control features 
will allow external applications benefit from whole palette of network functions 
accessible through OSA APIs. 

6. REFERENCES 
[1]  3GPP TR 29.998-04-1, Application Programming Interface (API) Mapping for OSA;Part 

4:Call Control Service Mapping; Subpart 1: API to CAP Mapping, V.5.0.0, 2002. 
[2]  3GPP TR 29.998-04-2, Application Programming Interface (API) Mapping for OSA; 
Part 4:Call Control Service Mapping; Subpart 2: API to INAP Mapping, 2002. 
[3]  Froloshki H., Pencheva E., Model of OSA / Parlay Gateway For Call Control, Proceedings 

of ICEST 2006,Book 1 pp. 113 - 116 
[4]  Gurbani V. K., Haerens F., Rastogi V., Interworking SIP and Intelligent Network (IN) 

Applications , RFC 3976,January 2005 
[5] 3GPP TR 29.998-04-4, Application Programming Interface (API) Mapping for Open 

Service Access; Part 4: Call Control Service Mapping; Subpart 4: Multiparty Call Control 
ISC, 2002 

[6] Xiaotao W., Schulzrinne, H., Programmable end system services using SIP, Proceedings of 
IEEE International Conference on Communications, 2003. Book 2 pp. 789- 793, 2003. 

93 



ELECTRONICS’2006                                                          20-22 September, Sozopol, BULGARIA




Mapping of Generic Open Interfaces to Network Protocols 


Hristo E. Froloshki, Evelina N. Pencheva


Department of Telecommunications, Technical University – Sofia, “Kliment Ohridski” Blvd. 8 1000, Sofia, Bulgaria, phone: (+359) (2) 965 2134, e-mail: hef@tu-sofia.bg, enp@tu-sofia.bg 


The paper presents a mapping of Parlay/Open Service Access (OSA) Application programming interfaces (APIs) onto underlying network protocols like ISDN user part (ISUP), CAMEL application part (CAP) and Session initiation protocol (SIP). The focus is on Call control API enabling third party applications to interfere in creation, manipulation, termination and teardown of communication sessions. 

Keywords: Open service access, Call control, SIP, CAP, ISUP


1. Introduction


Next generation networks bring the promise for a multitude of attractive services, satisfying subscriber’s needs. Various networking technologies are expected to cooperate and deliver valuable solutions. Industrial leaders in IT and telecommu​nication sectors apply the proved concept of layering to the process of application accessing network services. The concept is brought to life by 3rd generation partnership project consortium in the form of application programming interfaces (APIs), known as Parlay/OSA (Open Service Access). Each API is aimed at specific network functionality called service capability such as call-control, user interaction, mobility, data session control, network management, etc. OSA APIs provide applica​tion developers with programmability of network resources defining them in terms of objects with methods, data types and parameters on which they operate.


Present paper focuses on call-control API, and in particular its generic call control part, since it has heavy impact on all services, requiring application intervention in call creation, manipulation, termination and teardown. Third party applications are able to setup a communication sessions or play scheduled announcements to subscri​bers of these networks. Some of the important call control API methods are consider​ed and brief overview of their meaning for voice-carrying networks such as circuit switched or packet switched telephony is performed. Suggestions for mapping between OSA API methods and underlying network protocol messages are presented as well. Then validation of the proposed concept is done through functional model of a software entity, capable of translating between Parlay/OSA application servers and voice networks, employing ISUP (ISDN user application part) and SIP (Session initiation part) signaling protocols. A brief overview is made for CAMEL (Customiz​ed application for mobile services enhanced logic) enabled mobile networks, where mapping is given in [1] and telephony networks structured as intelligent one [2].

2. Call Control API and Exposed Network Functionality


Originally the Parlay/OSA APIs are intended for exclusive use in third generation mobile networks. However the 3GPP standards are open by design and allow expan​sion toward fixed telephony networks. In previous works call control objects, defined by the API were discussed [3], while here the stress is on implications of mapping the API’s methods on network-specific protocols and the nodes, who understand them.


A primary functionality required by the call control API is a mechanism for trans​porting notifications about the states in call for a particular subscriber. This informa​tion allows service logic (residing in application server) to control the call (put it on hold, redirect, play a wakeup message and so on), bringing more value to the subscri​ber. Call related information in circuit switched networks structured as intelligent ones is accessible through INAP (Intelligent Network Application Part) protocol.


Another key functionality is the option for load-control, requested by application. The most important reason for this is to keep processing load of both the application server and the Parlay gateway within reasonable limits - otherwise there is a risk for failing the execution of services and/or degrading quality of service parameters.


The API enables applications to obtain timing information, useful for service deli​very, such as: starting time of call, end time of call, time of connection to a resource, etc. It should be noted that this is possible if the underlying network (whose resources are abstracted) supports these parameters, for example mobile network supporting CAMAL application part (CAP). On contrary with circuit switched networks, SIP-based telephony networks do not provide call-related timing information. To provide this sort of information the implementation of SIP proxy has to consider the necessity of collecting call information.


Last, but not least is the feature, allowing application to request the routing of a call from originating to destination address. Here the API is influenced by options, provided by INAP and CAP messages, while SIP at first glance satisfies partially the required functionality (concerning services such as redirect or mid-call digit entry). This leads to the conclusion that some services will not be portable across different types of networks. As suggested in [4] there are certain mechanisms in SIP to trans​port information, related with mid-call services, but these are left to be implementa​tion specific, which contradicts the founding idea of Parlay – to present generic network services, to application servers.


3. Mapping API Methods on Network Protocols Procedures


The paper considers only a fraction of API’s methods, since not all are appropriate for translation to underlying networks. As illustration for this statement let’s consider load control feature, requested by application. In CAP enabled mobile network this translates into call gap procedure, while in SIP network, this must be implemented in internal proxy routine. This section focuses on some methods defined for IpCallCont​rolManager and IpCall objects and their mappings on CAP, INAP, ISUP and SIP. 


3.1 CAP Mapping


The most important methods for IpCallControlManager are enable(disable)Call​Notification used for declaring the application interest in states of a call. These are translated as Mobile application part messages AnyTimeModification and obtain CAMEL subscriber information. Actual call state information is transferred through callEventNotify method, which extracts it from the CAP InitialDP message. Consider​ed IpCall methods are RouteReq – to actually setup a call the application invokes the method, which in turn is translated to CAP connect message. It carries all the necessa​ry information for the service switching point. Here should be noted that RouteReq method assumes translation to different CAP messages (CAP Connect, Continue and ContinueWithArgument), depending on the method provided values. CAP EventRe​portBCSM message carries the type of event, detected in the mobile network. Its translation is invocation of RouteRes method, implemented by IpAppCall object on the application side. If the call state is disconnected, the called API method is callEnd​ed. DeassignCall method is translated as CAP Cancel or Continue to indicate that the application is no longer interested in controlling the call. GetCallInfoReq is mapped on CAP CallInformationRequest in order to provide call related timing information. 


3.2 ISUP Mapping


Direct mapping to ISUP is possible, but advantages gained from it are minor when compared with rise in requirements and complexity of network servers. This section presents some assumptions for such mapping and uses the approach used in [5] – direct mapping of the call control API on call setup signaling protocol (SIP). It was mentioned above for IpCallControlManager requirements in terms of call event notifications, which should be maintained by a call state machine, implemented in the network server itself. In contrast CAP and INAP do not pose such requirement for the network server – the basic call state model is implemented in the switch and call state information is transported by the two protocols (CAP and INAP). Functional mapping is the only way to translate the call control API in ISUP messages – this means intro​duction of new nodes or at least new functionality in the fixed telephony network. These ideas apply for the other considered object – IpCall – some of its methods indeed have direct translation (routeReq – IAM, release/callEnded – REL), while others (deassignCall, routeRes, getCallInformation) require availability of basic call state model implementation within the network server.


3.3 SIP Mapping


SIP has gained enough momentum in its development and deployment to be considered as a viable candidate for extension toward IN services (for the cases where these services are required in heterogeneous environments). [4] offers architecture for IN enabled SIP proxy, capable of processing INAP messages. There is also mapping between states in the two basic call state models concerning originating and termina​ting part and the SIP state machine, enabling provision of SIP call states through INAP. Availability of SIP call-state model makes it possible for Parlay/OSA applica​tions to request services from a SIP proxy in a generic way. [5] offers architecture where the SIP user agent functionality is accessible directly through OSA servers. The difference between two approaches, is that in the first case intermediary protocol is used to deliver state information, from SIP server supporting call state machine, while the latter uses direct mapping, also assuming that the SIP server supports call state machine. There is no doubt that call state machine is needed in order to provide IN services, but a question arises: do we need the intermediate functions of INAP? The answers are yes – where we expect mixed environments and no – for entirely IP-based networks. Furthermore, the API is more “friendly” toward INAP than SIP.


Mapping of Call Control Manager’s methods poses few difficulties when consi​dering SIP network architecture. EnableCallNotification method requests subscription for call-related events, associated with SIP. [4] offers partial solution because events are detected and reported before the active state. SIP supports hold service, but the real problem with the active state is the transfer of information (such as dialed digits) or implementing a service as redirecting the active call on another address. The reason for this “disability” is that SIP proxy servers do not control the media stream. Methods in IpCall also present some ambiguity – RouteReq may translate into Invite message, but some parameters, concerning services such as call divert or call redirect do not have SIP equivalents, and need to be mapped functionally (which is possible if we consider the intelligent network service call divert and the functionality of a redirect server). Method deassignCall can be implemented internally for the INAP-enabled SIP proxy. Release is mapped on a Bye message. Methods for collecting timing information for a call also should be implemented internally.


4. Parameter Mapping


This section gives the resulting parameter mappings for INAP, ISUP and SIP. For some API methods there are no direct corresponding messages and some assumptions, described in previous section are applied. Tabl.1, tabl.2, tabl.3 summarize mapping of Generic Call Control (GCC) API on to INAP, ISUP and SIP protocols correspond​ingly.


Tab.1. Mapping GCC API to INAP


GCC object

Method

Parameters

INAP Procedure

INAP Parameter



IpCall

routeReq()

targetAddress


originatingAddress


originalDestinationAddress


redirectingAddress

Connect

destinationRouting​Address


callingPartyAddress


originalCalledPartyID


redirectingPartyID



IpApp​Call

routeRes()

eventReport

EventReportBCSM

eventTypeBCSM


eventSpecificInformationBCSM



IpCall

release()

callSessionID


cause

ReleaseCall

initialCallSegment


Cause



IpCall

Deassign​Call()

callSessionID

-

Internal implementation 


for SCS



IpCall

getCallInfo​Req()

callInfoRequested

CallInforma​tionRequest

requestedInformationTypeList



IpCall


Control


Manager

setCallLoadControl

Duration


address range

Call Gap 

GapIndicators


calledAddressValue



Tab.2. Mapping GCC API to ISUP


GCC object

Method

Parameters

ISUP Message

ISUP Parameter



IpCall

routeReq()

targetAddress


originatingAddress


originalDestinationAddress


redirectingAddress

Initial Address Message

Called party number


Calling party number


Original called number


Redirecting number



IpAppCall

routeRes()

eventReport

N/A

N/A



IpCall

release()

callSessionID


cause

Release Message

Cause indicators



IpCall

deassignCall()

callSessionID

-

Internal implementation 


for SCS



IpCall

getCallInfoReq()

callInfoRequested

-

Internal implementation 


for SCS



IpCall


Control


Manager

setCallLoadControl

Duration


address range

-

Internal implementation 


for SCS



Tab.3. Mapping GCC API to SIP


GCC object

Method

Parameters

SIP method

SIP Parameter



IpCall

routeReq()

targetAddress


originatingAddress


originalDestination​Address


redirectingAddress

Invite


Redirect

To:


From:


To:


N/A



IpApp​Call

routeRes()

eventReport

EventReportBCSM


(INAP-enabled SIP proxy)

eventTypeBCSM


eventSpecificInformationBCSM



IpCall

release()

callSessionID


cause

ReleaseCall


(INAP-enabled SIP proxy)

initialCallSegment


Cause



IpCall

Deassign​Call()

callSessionID

-

Internal implementation 


for SCS



IpCall

getCallInfo​Req()

callInfoRequested



Internal implementation 


for SCS



IpCCl


Manager

setCallLoadControl

Duration


address range



Internal implementation 


for SCS



5. Conclusions


The paper presents results of thorough analysis of OSA open interfaces applicabi​lity in circuit and packet switched networks. A mapping of OSA Call Control methods onto CAP, INAP, ISUP and SIP network is done. The analysis points that SIP-based telephony networks do not support the whole OSA call control functionality - it is up to implementation of SIP servers to provide it. Enhancing SIP call control features will allow external applications benefit from whole palette of network functions accessible through OSA APIs.


6. References


[1]
 3GPP TR 29.998-04-1, Application Programming Interface (API) Mapping for OSA;Part 4:Call Control Service Mapping; Subpart 1: API to CAP Mapping, V.5.0.0, 2002.


[2]
 3GPP TR 29.998-04-2, Application Programming Interface (API) Mapping for OSA;


Part 4:Call Control Service Mapping; Subpart 2: API to INAP Mapping, 2002.


[3]
 Froloshki H., Pencheva E., Model of OSA / Parlay Gateway For Call Control, Proceedings of ICEST 2006,Book 1 pp. 113 - 116


[4]
 Gurbani V. K., Haerens F., Rastogi V., Interworking SIP and Intelligent Network (IN) Applications , RFC 3976,January 2005


[5]
3GPP TR 29.998-04-4, Application Programming Interface (API) Mapping for Open Service Access; Part 4: Call Control Service Mapping; Subpart 4: Multiparty Call Control ISC, 2002


[6] Xiaotao W., Schulzrinne, H., Programmable end system services using SIP, Proceedings of IEEE International Conference on Communications, 2003. Book 2 pp. 789- 793, 2003.


93



