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A Field Programmable Analog Array (FPAA) circuit of a low-frequency sinewave 
oscillator has been proposed and investigated in this paper. For that purpose the typical 
structure of a sinewave oscillator, based on the modeling of Van der Paul differential 
equation has been studied. Using the CAD system AnadigmDesigner2 the FPAA circuit of the 
oscillator has been designed and simulated. It has been practically implemented and 
experimented by means of Evaluation Board AN221E04 – a product of Anadigm Inc. The 
obtained results confirm the effectiveness of the proposed solution. The designed sinewave 
oscillator can be applied in research and educational practice in designing programmable SC 
circuits and FPAA based systems. 
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1. INTRODUCTION 
Field Programmable Analog Arrays (FPAAs), produced by Anadigm, are modern 

programmable integrated circuits for analog and mixed signals processing. They are 
based on SC circuitry. This technology ensures high precise implementation of time 
constants and gain factors of the used analog functional blocks [1]. 

 The process of designing of FPAA circuits is assisted by specialized CAD 
software - AnadigmDesigner2, which uses a library of configurable analog blocks - 
amplifiers, filters, multipliers, comparators, etc. A programmable sinewave oscillator 
(OscillatorSin ver.1.2.2) is included in the library, also. It has a programmable 
amplitude and frequency. Based on a biquadratic filter structure, the circuit oscillates 
at its own resonant frequency.  This oscillator has continuous output that is always 
valid (full cycle). Oscillation frequency limits are linearly related to the frequency of 
the sample clock.  The absolute limits are from  100FC to  5FC . 

A disadvantage of the built-in oscillator is the high value of the low limit of the 
generated signal frequency. For instance, at a clock cycle frequency of 4MHz, 
this limit is 40 kHz. Using lower frequency clock cycle can decrease the limit. For 
example, if the frequency  is 50kHz, the low frequency limit of oscillations 
decreases to 500Hz. The most important disadvantages of this solution are the 
increasing the harmonics of the signal (i.e. worsening the signal form) and the 
decreasing the speed of signal processing in the chip.  

=CF

CF

Well-known approach for generation of low-frequency sinewave oscillations is 
the modeling of differential equation by using operation amplifiers. In practice, 
usually Van der Paul differential equation is modeled [2]. 
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The paper presents the results from design and investigation of FPAA low 
frequency sinewave oscillator, based on the modeling of Van der Paul differential 
equation.                  

For that purpose the base structure for modeling of Van der Paul equation has 
been examined and formulas for determining and designing the frequency of the 
generated signal have been discussed. By means of Evalution Board AN221E04, 
produced by Anadigm, several validation experiments have been made for generating 
various frequencies. 

2. BASIC CIRCUIT 
The Van der Paul equation is [2]: 

(1)  0UU2U a
2
o

.

aa
..

=ω+γ+

According to the analysis, given in [2], steady sinewave oscillations with 
frequency ωo originate when 0=γ . In this case the equation transforms into: 

(2)  0UU a
2
oa

..
=ω+

The solution of this differential equation can be obtained by structure shown in 
Fig. 1. 

 
 
 
 
 
 
Fig. 1. Functional circuit of a sinewave 
oscillator, based on Van der Paul equation 

The presented structure comprises two inverting integrators (Int1, Int2) and an 
inverting amplifier (Amp.1). 

Let’s assume that the signal at point A is: 
(3) ( ) tUtu mA ω= sin .        

Respectively, the voltages at points B and C on the circuit are: 
(4) ( ) ( ) tUGtuGtu mAB ω−=−= sin11 ,      

(5) ( ) ( ) t
UGK

tuKtu m
BC ω

ω
−=∫−= cos11

1 .       

The signal at point C is integrated by Int.2 and in this case the voltage at its output 
(point A) is: 

(6) ( ) ( ) t
UGKK

tuKtu m
CA ω

ω
=∫−= sin

2
121

2 .  

60 



ELECTRONICS’ 2006                                                       20 – 22 September, Sozopol, BULGARIA 

According to the structure on Fig. 1, equations (3) and (6) are equivalent, so: 

(7) tU
GKK

tU mm ω
ω

=ω sinsin
2

121  

The equation (7) is true when: 

(8) 1
2

121 =
ω

GKK
 

Consequently, the following expression is received for the frequency of the 
oscillations: 

(9) 
π

=
2

121 GKK
f .                                                    

The analysis of (9) shows that the frequency of the generated signal can be 
programmed either by changing the constants of integration  and , or by 
changing the gain of the inverting amplifier. 

1K 2K
1G

3. FPAA IMPLEMENTATION  
Fig. 2 shows the implementation of the generator by using the chip AN221E04, 

produced by Anadigm Inc. AnadigmDesigner2 program has been used, which 
ensures the drawing, editing and simulating the circuit. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  FPAA implementation 
of a sinewave oscillator 

The structure is similar with the one shown in Fig. 1. Standard elements from the 
library have been used - amplifiers ( )G−  as well as an inverting and a non-∫− )(
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inverting  integrators. Adding the second inverting amplifier protects from 
undesired saturation at the output of Int.2, which can be caused by the relatively high 
values of voltage at the output of Int.1. For that purpose the gain factors  and  
should be less than 1. In order to keep the fulfillment of the phase condition for 
generation, it is necessary that the integrator Int.1 should be non-inverting. By 
analogy with equation (9) the following expression is received for the frequency of 
oscillations in case of the structure in Fig. 2: 

∫+ )(

1G 2G

(10) 
π

=
2

2121 GGKK
f .          

Since the case  и KKK == 21 GGG == 21  is most commonly used, formula 
(10) obtains the form: 

(11) 
π

=
2

KG
f .           

4. EXPERIMENTAL RESULTS 
The circuit has been examined by using AN221K04 AnadigmVortex 

Development Board. At first, several experiments were made to check the frequency 
of oscillations. Using formula (11) it was calculated that 314159.0=KG  should be 
ensured for a frequency of KHzF 50= . Consequently, when the value of K  
is , the gain of amplifiers should be 5.021 === KKK 6283.021 === GGG . In 
practice, when the values 5.021 == KK  and 628.021 == GG  have been 
programmed into the array, a frequency of = 49.972 kHz ( was 
measured at the output of the generator. Using the possibility of programming the 
amplifiers’ and the integrators’ parameters, the frequency of the generated signal can 
be adjusted most precisely. For example, if changing 

measF %)06.0=delta

629.01 =G , we receive for 
output frequency 49.994 kHz (=measF %)01.0=delta . 

 

Fig. 3. Signals at the outputs of the integrators Fig. 4. Phase portrait of the generated signal 
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A photo of the generated signals at the outputs of the integrators is shown in Fig. 
3. Fig. 4 represents the phase portrait, which has been received by using the same 
signals.  

Tabl. 1 shows the results of the experimental investigation of the implemented 
generator. The first column presents the desired frequency of generation, the second 
column – the product KG , necessary for achieving the desired frequency 
(when ). The third column shows the chosen values of 2121 , GGKK == 21 KK = , 
and the fourth one – the values of 21 GG = , necessary for achieving the desired 
frequency of generation. The fifth column presents the achieved result Fmeas , and 
the relative error Delta has been calculated in the sixth column. 

Tabl. 1. Results from examination of FPAA sinewave oscillator

F, Hz k.G K1=K2, [1/us] G1=G2 Fmeas, Hz Delta, %
200 0.001257 0.0400 0.0314 201 -0.60%
500 0.003142 0.0800 0.0392 505 -1.00%

1000 0.006283 0.0800 0.0785 1006 -0.60%
2000 0.012566 0.0800 0.1571 2014 -0.70%
5000 0.031416 0.1000 0.3142 5032 -0.63%

10000 0.062832 0.1000 0.6283 10097 -0.97%
20000 0.125664 0.2000 0.6283 20097 -0.49%
50000 0.314159 0.5000 0.6283 49972 0.06%

100000 0.628319 1.0000 0.6283 99703 0.30%
200000 1.256637 3.0000 0.4189 200003 0.00%
250000 1.570796 4.0000 0.3927 252012 -0.80%

 

Fig. 5 shows the relationship between the experimentally measured 
HzFmeas, and the desired frequency of generation HzF , . Fig. 6 demonstrates the 

relative error Delta, % vs. the frequency of the signal HzF , . 
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Fig. 5. Graphic of   
measured vs. desired 
values of frequency 
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Fig. 6.  The error 
Delta, % vs. the 
frequency of the 
generated signal 

5. CONCLUSIONS 
The paper represents an approach for implementing a low-frequency FPAA 

sinewave oscillator.  
For that purpose the structure of a sinewave signal generator (Fig. 1), based on 

Van der Paul equation has been studied. Using an FPAA, produced by Anadigm, a 
low-frequency sinusoid generator has been implemented (Fig. 2) and practically 
examined. 

The achieved results show that in the range of 200Hz ÷ 250kHz the proposed 
structure generates signals with relative error of frequency less than or equal to 1% 
(Tabl. 1). 

 The possibility of fine adjustment of the frequency of the generated signal by 
means of precise changing of the gain and the constant of integration of the used 
FPAA units is an additional advantage of the proposed circuit. 

The presented generator can be applied in constructing SC circuits and FPAA 
based electronic systems. 
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A Field Programmable Analog Array (FPAA) circuit of a low-frequency sinewave oscillator has been proposed and investigated in this paper. For that purpose the typical structure of a sinewave oscillator, based on the modeling of Van der Paul differential equation has been studied. Using the CAD system AnadigmDesigner2 the FPAA circuit of the oscillator has been designed and simulated. It has been practically implemented and experimented by means of Evaluation Board AN221E04 – a product of Anadigm Inc. The obtained results confirm the effectiveness of the proposed solution. The designed sinewave oscillator can be applied in research and educational practice in designing programmable SC circuits and FPAA based systems.
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1. Introduction


Field Programmable Analog Arrays (FPAAs), produced by Anadigm, are modern programmable integrated circuits for analog and mixed signals processing. They are based on SC circuitry. This technology ensures high precise implementation of time constants and gain factors of the used analog functional blocks [1].


 The process of designing of FPAA circuits is assisted by specialized CAD software - AnadigmDesigner2, which uses a library of configurable analog blocks - amplifiers, filters, multipliers, comparators, etc. A programmable sinewave oscillator (OscillatorSin ver.1.2.2) is included in the library, also. It has a programmable amplitude and frequency. Based on a biquadratic filter structure, the circuit oscillates at its own resonant frequency.  This oscillator has continuous output that is always valid (full cycle). Oscillation frequency limits are linearly related to the frequency of the sample clock.  The absolute limits are from 
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A disadvantage of the built-in oscillator is the high value of the low limit of the generated signal frequency. For instance, at a clock cycle frequency of 
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4MHz, this limit is 40 kHz. Using lower frequency clock cycle can decrease the limit. For example, if the frequency 
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 is 50kHz, the low frequency limit of oscillations decreases to 500Hz. The most important disadvantages of this solution are the increasing the harmonics of the signal (i.e. worsening the signal form) and the decreasing the speed of signal processing in the chip. 


Well-known approach for generation of low-frequency sinewave oscillations is the modeling of differential equation by using operation amplifiers. In practice, usually Van der Paul differential equation is modeled [2].


The paper presents the results from design and investigation of FPAA low frequency sinewave oscillator, based on the modeling of Van der Paul differential equation.                 


For that purpose the base structure for modeling of Van der Paul equation has been examined and formulas for determining and designing the frequency of the generated signal have been discussed. By means of Evalution Board AN221E04, produced by Anadigm, several validation experiments have been made for generating various frequencies.


2. Basic Circuit


The Van der Paul equation is [2]:
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According to the analysis, given in [2], steady sinewave oscillations with frequency ωo originate when
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The solution of this differential equation can be obtained by structure shown in Fig. 1.
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Fig. 1. Functional circuit of a sinewave oscillator, based on Van der Paul equation



The presented structure comprises two inverting integrators (Int1, Int2) and an inverting amplifier (Amp.1).


Let’s assume that the signal at point A is:


(3)
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Respectively, the voltages at points B and C on the circuit are:
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The signal at point C is integrated by Int.2 and in this case the voltage at its output (point A) is:


(6)
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According to the structure on Fig. 1, equations (3) and (6) are equivalent, so:


(7)
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The equation (7) is true when:


(8)
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Consequently, the following expression is received for the frequency of the oscillations:


(9)


[image: image15.wmf]p


=


2


1


2


1


G


K


K


f


.                                                   


The analysis of (9) shows that the frequency of the generated signal can be programmed either by changing the constants of integration 
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of the inverting amplifier.


3. FPAA Implementation 


Fig. 2 shows the implementation of the generator by using the chip AN221E04, produced by Anadigm Inc. AnadigmDesigner2 program has been used, which ensures the drawing, editing and simulating the circuit.
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Fig. 2.  FPAA implementation of a sinewave oscillator



The structure is similar with the one shown in Fig. 1. Standard elements from the library have been used - amplifiers 
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 integrators. Adding the second inverting amplifier protects from undesired saturation at the output of Int.2, which can be caused by the relatively high values of voltage at the output of Int.1. For that purpose the gain factors 
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 should be less than 1. In order to keep the fulfillment of the phase condition for generation, it is necessary that the integrator Int.1 should be non-inverting. By analogy with equation (9) the following expression is received for the frequency of oscillations in case of the structure in Fig. 2:
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4. Experimental Results


The circuit has been examined by using AN221K04 AnadigmVortex Development Board. At first, several experiments were made to check the frequency of oscillations. Using formula (11) it was calculated that 
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was measured at the output of the generator. Using the possibility of programming the amplifiers’ and the integrators’ parameters, the frequency of the generated signal can be adjusted most precisely. For example, if changing 
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Fig. 3. Signals at the outputs of the integrators

Fig. 4. Phase portrait of the generated signal



A photo of the generated signals at the outputs of the integrators is shown in Fig. 3. Fig. 4 represents the phase portrait, which has been received by using the same signals. 


Tabl. 1 shows the results of the experimental investigation of the implemented generator. The first column presents the desired frequency of generation, the second column – the product 
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Tabl. 1. Results from examination of FPAA sinewave oscillator
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Fig. 5 shows the relationship between the experimentally measured 
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Fig. 5. Graphic of  


measured vs. desired values of frequency
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Fig. 6.  The error Delta, % vs. the frequency of the generated signal



5. Conclusions


The paper represents an approach for implementing a low-frequency FPAA sinewave oscillator. 


For that purpose the structure of a sinewave signal generator (Fig. 1), based on Van der Paul equation has been studied. Using an FPAA, produced by Anadigm, a low-frequency sinusoid generator has been implemented (Fig. 2) and practically examined.


The achieved results show that in the range of 200Hz ÷ 250kHz the proposed structure generates signals with relative error of frequency less than or equal to 1% (Tabl. 1).


 The possibility of fine adjustment of the frequency of the generated signal by means of precise changing of the gain and the constant of integration of the used FPAA units is an additional advantage of the proposed circuit.


The presented generator can be applied in constructing SC circuits and FPAA based electronic systems.
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