
ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

SUPERVISING THE SECURITY OF THE MODERN INFORMATICS SYSTEMS

Mihai CARAMAN
Stefan DAN

Daniel BUCATOS
Adrian Virgil CRACIUN

Automatics Department, “Transilvania” University of Brasov, 5 Mihai Viteazu Street, 500174,

Brasov, Romania, phone/fax: +40 0268 418836,
mihai.caraman@deurcenteromedia.ro, dan.stefan@unitbv.ro,

daniel_bucatos@yahoo.com, craciun@vega.unitbv.ro

This paper presents security supervising mechanisms for modern informatics systems. We

emphasis the .NET Code Access Security technology features and present a new application CAS
Scenarios Generator Tool. This tool was designed to deliver source code for various scenarios that
are encountered dealing with CAS, to compile and run the generated binaries and to acquire and
interpret the results. This paper also presented aspects of the security administration and
extensions to the open source network assessment tools.

Keywords: Code Access Security, .NET Framework, network security tools

1. INTRODUCTION

One of the main priorities of any informatics system is to be secure. This issue

address from the mobile equipments to personal computers, the corporation networks
and not less the internet backbone.

The assurance of security for an informatics system is necessary in order to insure
the processing resources and its services, to protect the information confidentiality or
to avoid its use as host for new attacks.

The assurance of security can be achieved on two ways: developing secure
applications and providing a well-balanced system administration.

The development process for secure applications resides on modern technologies
such as: .NET and Java. Those technologies offers new concepts integrated into
frameworks dedicated for security.

Security administration includes general techniques such as: application
configuration, application maintenance through patches and updates, the usage of
antivirus application, firewalls, antispyware as well as tools for vulnerability
detection.

This paper approaches the following key aspects:

ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

Security modern technologies: The use of the new .NET security framework.
This managed environment drastic diminishes the potential occurrence of buffer
overruns and provides code access security to help solve trust, semitrusted and
untrusted code dilemma. In this presentation we emphasis the .NET Code Access
Security (CAS) features.

The development process of the secure applications: Writing secure code using
the .NET security framework and embarrassment of the SD3 strategy: secure by
design, by default and in development. We present our new application named CAS
Scenarios Generator Tool.

Administration techniques: Setting the CAS security policies.
Open source network assessment tools: Extending and use of Nessus tools for

vulnerability detection and attacks prevention.

2. THE SECURITY SUPERVISING SYSTEM

2.1. .NET Code Access Security

2.1.1.1. The Windows Classical Model
The classical security in Microsoft Windows considered only the principal’s

identity when performing security checks. That means that if the user is trusted the
code runs with the person’s identity and as a result is trusted and has the same rights
as the user.

2.1.1.2. A Definition For Code Access Security
The new .NET common language runtime offered by Microsoft provide

managed code that help mitigate some of the security vulnerabilities like buffer
overruns and issues associated with fully trusted mobile code like ActiveX.

Code access security allows code to be trusted to varying degrees,
depending on where the code originates and on other aspects of the code's identity.
Code access security also enforces the varying levels of trust on code, which
minimizes the amount of code that must be fully trusted in order to run.

2.1.1.3. Code Access Security Features
Code access security is a mechanism that controls the access code has to

protected resources and operations. It performs the following functions:
• Defines permissions and permission sets that represent the right to

access various system resources.
• Enables administrators to configure security policy by associating sets of

permissions with groups of code (code groups).

• Enables code to request the permissions it requires in order to run, as
well as the permissions that would be useful to have, and specifies which
permissions the code must never have.

ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

• Grants permissions to each assembly that is loaded, based on the
permissions requested by the code and on the operations permitted by
security policy.

• Enables code to demand that its callers have specific permissions

• Enables code to demand that its callers possess a digital signature, thus
allowing only callers from a particular organization or site to call the
protected code.

• Enforces restrictions on code at run time by comparing the granted
permissions of every caller on the call stack to the permissions that
callers must have.

To determine whether code is authorized to access a resource or perform an
operation, the runtime's security system walks the call stack, comparing the granted
permissions of each caller to the permission being demanded. If any caller in the call
stack does not have the demanded permission, a security exception is thrown and
access is refused. The stack walk is designed to prevent luring attacks, in which less-
trusted code calls highly trusted code and uses it to perform unauthorized actions.

2.1.1.4. Security Syntax
Code that targets the common language runtime can interact with the

security system by requesting permissions, demanding that callers have specified
permissions, and overriding certain security settings (given enough privileges). There
are two different forms of syntax to programmatically interact with the .NET
Framework security system: declarative syntax and imperative syntax.

• Declarative security syntax uses attributes to place security information
into the metadata of the code. Attributes can be placed at the assembly,
class, or member level, to indicate the type of request, demand, or
override we want to use.

• Imperative security syntax issues a security call by creating a new
instance of the permission object we want to invoke. We can use
imperative syntax to perform demands and overrides, but not requests.

2.1.1.5. Requesting Permissions
Requesting permissions is the way we let the runtime know what our code

needs to be allowed to do. We request permissions for an assembly by placing
attributes (declarative syntax) in the assembly scope of our code. When the assembly
is created, the language compiler stores the requested permissions in the assembly
manifest. At load time, the runtime examines the permission requests, and applies
security policy rules to determine which permissions to grant to the assembly.
Requests only influence the runtime to deny permissions to our code and never
influence the runtime to give more permission to our code. The local administration
policy always has final control over the maximum permissions our code is granted.

ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

• RequestMinimum specify the permissions that our code must have in
order to run.

• RequestOptional specify the permissions that our code can use, but can
run effectively without. This request implicitly refuses all other
permissions not specifically requested.

• RequestRefuse specify the permissions that we want to ensure will never
be granted to our code, even if security policy allows them to be granted.

2.1.1.6. Security Demands
To ensure that only callers that have been granted a specified permission

can call our code, we can declaratively or imperatively demand that callers of our
code have a specific permission or set of permissions. A demand causes the runtime
to perform a security check to enforce restrictions on calling code. During a security
check, the runtime walks the call stack, examining the permissions of each caller in
the stack and determining whether the permission being demanded has been granted
to each caller. If a caller that does not have the demanded permission is found, the
security check fails and a SecurityException is thrown. The only demands that do not
result in a stack walk are link demands, which check only the immediate caller.

• Demands. We can use the security demand call declaratively or
imperatively to specify the permissions that direct or indirect callers
must have to access our library.

• Link demands. A link demand causes a security check during just-in-
time compilation and only checks the immediate caller of our code.
Linking occurs when our code is bound to a type reference, including
function pointer references and method calls. If the caller does not have
sufficient permission to link to our code, the link is not allowed and a
runtime exception is thrown when the code is loaded and run. Link
demands can be overridden in classes that inherit from our code.

• Inherit demands. Inheritance demands applied to classes have a different
meaning than inheritance demands applied to methods. We can place
inheritance demands at the class level to ensure that only code with the
specified permission can inherit from our class. Inheritance demands
placed on methods require that code have the specified permission to
override the method.

2.1.1.7. Overriding Security Checks
Normally, a security check examines every caller in the call stack to ensure

that each caller has been granted the specified permission. However, we can override
the outcome of security checks by calling Assert, Deny, or PermitOnly on an
individual permission object or a permission set object. Depending on which of these
methods we call, we can cause the security check to succeed or fail, even though the
permissions of all callers on the stack might not have been checked.

ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

• Calling Assert enables the code (and downstream callers) to perform
actions that our code has permission to do, but its callers might not have
permission to do. A security assertion changes the normal process that
the runtime performs during a security check, telling the security system
not to check the callers for the asserted permission

• Calling Deny prevents access to the resource specified by the denied
permission. If our code calls Deny and a downstream caller
subsequently demands the denied permission, the security check will
fail, even if all callers have permission to access that resource

• Calling PermitOnly has essentially the same effect as calling Deny, but
is a different way of specifying the conditions under which the security
check should fail. PermitOnly says that only the resources we specify
can be accessed

2.2. CAS Scenarios Generator Tool

The CAS Scenarios Generator Tool (CAS SGT) was designed to deliver source

code for various scenarios that are encountered dealing with CAS. It offers the
possibility of choosing the topology and the security enforcements for our
application:

• Name the desired assemblies
• Sign the assemblies
• Assign standard and custom security permission attributes per assembly.

Select the declarative or interactive syntax.
• For each assembly define methods choosing from a predefined list of

functions. This functions specify the system resources that they access:
files, environment variables, registry, sockets etc

• Select the call flow between methods
• Assign standard and custom security permission attributes per method:

FileIOPermission, SocketPermission, IsolatedStoragePermission, etc
• Assign CodeAccesPermission calls per method: Demand, Assert, Deny

The CAS SGT it is also capable to compile and run the generated binaries
acquiring and interpreting the results. It presents the list of possible conflicts and
exceptions generated by the lack of right permissions and present hints to avoid
dangerous code.

This tool is useful for two main reasons. First we have a base to test our concepts
combining different permission requirements and see the possible results. Second we
have the source code that can be used for didactical purposes or directly reused in
production solutions.

The CAS SG code generation is accomplished by the use of the CodeDom
support offered by the .NET Framework. The CodeDom mechanism enables

ELECTRONICS’ 2005 21-23 September, Sozopol, BULGARIA

developers of programs that emit source code to generate source code in multiple
programming languages at run time, based on a single model that represents the code
to render.

The CAS SGT has an extensible architecture offering an interface for adding new
plug-ins. The plug-ins describes in an xml format or directly in a .NET source code
file a list of functions that generally access system resources.

2.3. The Code Access Security Policy System

The CAS system is driven by a persisted security policy, offering different

configuration containments (called policy levels) for enterprise-wide security
configuration and machine-wide and per-user security settings. Security policy can be
set using a GUI tool (the .NET Framework Configuration tool), a command line tool
for batch scripting security changes, or by programming to the security APIs directly.

2.4. Open Source Network Assessment Tools

Nessus is a free and open source vulnerability scanner. It exposes the Nessus
Attack Scripting Language (NASL) specifically designed for developers in order to
write their own vulnerability checks. It presents predefined function specially
designed to perform network vulnerability tests. NASL language is more portable and
architecture independent than C programming language
 Supposing that we have implemented a proprietary network protocol on top of
a TCP socket server, a plug-in implementation would be to test the input validation.

3. CONCLUSIONS

In this paper we presented security supervising mechanisms for modern
informatics systems. We reviewed the .NET Code Access Security features such
Requesting Permission, Security Demands and Overriding Security Checks.

We presented the CAS Scenarios Generator Tool, designed to deliver source code
for various scenarios that are encountered dealing with CAS, to compile and run the
generated binaries and to acquire and interpret the results. We enumerated other
security mechanisms such administration of the policy system and open source
network assessment tools

4. REFERENCES

[1] M. Howard, D. LeBlanc: Writing Secure Code, Microsoft Press, 2003
[2] B. LaMacchia, S. Lange, M. Lyons, R. Martin, K. Price: NET Framework Security,

Addison Wesley, 2002
[3] P. Thorsteinson, G. Gnana Ganesh: .NET Security and Cryptography, Prentice Hall, 2003
[4] J. Clarke, N. Dhanjani: Network Security Tools, O'Reilly, 2005
[5] Visual Studio .NET 2005 MSDN Library, Microsoft, 2005

