
ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

INITIALIZING COMMUNICATION TO VEHICLE OBDII SYSTEM

Peter Dzhelekarski, Dimiter Alexiev
Faculty of Electronic Engineering and Technologies, Technical University of Sofia,

8 Kliment Ohridski Str., 1000 Sofia, Bulgaria, phone: +359 2 965 2622, e-mail: pid@tu-sofia.bg

This paper presents initialization of data communication link to vehicle OBDII (On-
Board Diagnostics II) system using a PC-based diagnostic tester. The current work
represents the physical layer of a diagnostic tester project. A concise overview of OBDII
system is shown at the beginning. Diagnostic interfaces for communication with external
testers are investigated. The ISO 9141-2 / ISO 14230 interface has been chosen for
implementation mainly because it can be directly interfaced from a PC using simple electrical
converter to RS232 (interface adapter). The circuit of the interface adapter is included and
the operation principle is explained. The software part is developed using C++ language.
Prior to any diagnostic communication an initialization must be performed. After successful
initialization data can be transferred. The initialization and data transfer mechanisms are
described in detail. Practical results from verification of diagnostic tester in real conditions
are included.

Keywords: OBD, diagnostics, initialization, ISO 9141-2 and ISO 14230.

1. INTRODUCTION
This paper represents the physical layer of a PC-based diagnostic tester project.

The data link layer and the application layer of the project are given in [1].
1.1 OBDII SYSTEM OVERVIEW
The purpose of an OBD (On-Board Diagnostics) system, mandatory for new

vehicles, is to ensure correct operation of the emissions control system of a vehicle
during its lifetime by monitoring emissions related components for deterioration and
malfunction. The OBDI system was first introduced in California from model year
1991. Now the USA are using systems meeting higher standard OBDII, which was
introduced from 1996 model year. Europe has developed the system EOBD
(European OBD), equivalent to OBDII, which has become mandatory since model
year 2001 for gasoline vehicles and 2003 for diesel vehicles. In this article, from this
point forward, the OBD abbreviation refers to OBDII/EOBD.

OBD monitors the following components/systems: catalytic converters;
evaporative control system; emissions control system; oxygen sensors; emissions
related sensors and actuators; engine misfire; exhaust gas recirculation (EGR); fuel
system – closed loop system performance, etc.

The output from OBD system is a warning light with engine symbol, presented to
the driver in the instrument cluster. This is known as the malfunction indicator lamp
(MIL). When a fault has been detected, a diagnostic trouble code (DTC) is set and
stored in ECU (Electronic Control Unit) memory. Each DTC indicates the fault
component or its circuit. The information stored within OBD system can be obtained
via 16 pin data link connector (DLC) located in the passenger compartment.

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

Diagnostic tester (scan tool) is required to obtain and display the diagnostic
information stored via serial diagnostic interface. [8]

1.2 DIAGNOSTIC INTERFACES
The diagnostic interfaces provide a communication link between OBD system and

external test equipment. There are three physical diagnostic interfaces:
1) SAE J1850 (ISO 11519-4) – Class B data communication interface: two

alternative physical implementations: single-wired 10.4 kbit/s VPW (Variable
Pulse Width) and two-wired differential 41.6 kbit/s PWM (Pulse Width
Modulation). Application: mainly GM and Ford. [9]

2) ISO 9141-2 / ISO 14230 – K-line interface: 10.4 kbit/s, single-wired interface,
compatible with UART/SCI byte/word interface. The optional L-line is used
only during initialization. Application: most European and Asian
manufacturers, also Chrysler and GM. [4, 5]

3) ISO 15765-4 (ISO 11898) – CAN interface: high speed two-wired differential
interface, 500 kbit/s. Application: will be mandatory after model year 2008. [2]

The second option ISO 9141-2 / ISO 14230 has been chosen for the current
project mainly because it can be directly connected to RS 232 interface via a simple
electrical converter (interface adapter) and also due to the fact that it is the most
common interface in Europe.

2. PROBLEM STATEMENT
The main task of the present work is to implement the physical layer of a PC-

based OBD tester. The diagnostic tester must conform to the requirements for
external test equipment specified in ISO 15031-4 [7] and should use ISO 9141-2 /
ISO 14230 diagnostic interface.

Objectives
1) Interface adapter implementation (hardware implementation);
2) Software implementation (PC-program):

a. Serial port access – sending and receiving bytes via RS 232 interface;
b. Initialization – process, performed prior to any diagnostic communication;
c. Data transfer – sending and receiving diagnostic messages.

3) Verification.
3. INTERFACE ADAPTER
The interface adapter serves as an electrical converter between ISO 9141-2 / ISO

14230-1 (vehicle side) and RS 232 (PC side). The diagnostic interface has two lines.
K-line is a bidirectional line used for data transfer. L-line is a unidirectional line
which can be utilized to convey address information during initialization (not all
OBD systems have an L-line). The electrical levels on K&L- lines are given in
Table 1. The slop times shall be less than 10% of bit time (9.6 µs for 10.4 kbit/s). [5]

Table 1. Electrical levels of ISO 9141-2 / ISO 14230-1
 logic “1” logic “0”

UK/L min max min max

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

Transmitter 0.8 UB UB 0.2 UB UB
Receiver 0.7 UB UB 0.3 UB UB
UK/L – K/L-line voltage; UB – vehicle battery voltage.

+UB

R2

ISO3

K

R8

L

R5

DLC

GND

Server
(OBD System)

Q1

D1

R6

ISO2

Q2

R1

(RS232)

R3

DTR

C1

ISO1

R4

RxD

R7

D2

J1
DB9

1
2
3
4
5
6
7
8
9

Client

RTS

J2
ISO 15031-3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

RS 232
(PC) GND

R9

TxD

Fig. 1. Interface adapter circuit

The circuit of the interface adapter (see Fig. 1) is based on Jeff Noxon’s project
[10]. The adapter is powered from the vehicle battery (+UB of DLC) and from RS 232
signals. The three optrons are the heart of the adapter providing electrical level
shifting with isolation. The optron ISO2 and the transistor Q2 are used for sending
signals from TxD to K-line. The optron ISO1 and the transistor Q1 are used for
receiving signals from K-line to RxD. The transistor of ISO1 is powered from DTR
which state must be kept set (+12 V). The optron ISO3 is used for sending signals
from RTS to L-line. In normal conditions RTS must be cleared (-12 V). Only when L-
line is used, is the information submitted as an output. The diodes D1 and D2 protect the
optron’s LEDs from reverse voltages. The capacitor C1 is used for filtering the vehicle’s
supply voltage. Two connectors are used, DB9 for RS232 and DLC for OBD system.

4. SOFTWARE IMPLEMENTATION
The software part of the current work is developed using C++ object-oriented

language. The development tool utilized is the free command-line Borland C++ 5.5
Compiler© for Win32. The software implementation supports the following
operating systems: Microsoft Windows© 98/ME/NT/2000/XP (98- and NT family).
This is achieved using Win32 base API services for serial port communications (e.g.
CreateFile, ReadFile, WriteFile, etc.). The port is opened using non-overlapped
(synchronous) access. This is useful for creating portable and multithreaded
applications. [3]

The program structure is shown on Fig. 2. It contains the following three classes:

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

- class Rs232 provides serial port access methods for: opening/closing of port;
port settings; writing/reading array of bytes with specified size;
setting/clearing DTR , RTS and TxD; setting communication timeouts.

Fig. 2. Program Structure

- class Rs232Private is hidden from users, declared in the Rs232_Win32.cpp
file, used by Rs232, containing handle to port and other data members.

- class Rs232Iso inherits Rs232 and provides methods for initialization and data
transfer, namely the following:

o initFast () performs fast initialization;
o initSlow () performs 5-baud initialization;
o transfer () sends request message and receives response message(s)

5. INITIALIZATION
Prior to any diagnostic communication an initialization must be performed. This

is the process of activating the OBD system for starting communication. The
initialization can be started after an idle-time on the bus. Two types of initialization
can be used: 5-baud and fast initialization. ISO 9141-2 supports only 5-baud
initialization, whereas ISO 14230-2 supports both types. [4, 6]

5.1 5-BAUD (CARB) INITIALIZATION
This initialization starts with sending of 5-baud address byte from the tester

(client) to the OBD system (server). If L-line exists, the address byte must be sent
simultaneously on both K & L-lines, otherwise it should be sent only on K-line. The
address byte contains the functional address of the OBD system. This is implemented
in two ways in initSlow() method. In K&L initialization, both lines are driven by
simultaneous setting/clearing of RTS and TxD according to the bit values of the
address byte: this is computed 5-baud init. A system timer for 200 ms (5-baud bit
time) is used. For K-only initialization the port is configured at 5 baud rate; the
address byte is sent; 2000 ms pause follows; baud rate is restored to 10,400 baud.

Fig. 3 shows the format of the 5-baud initialization. The server returns baud rate
synchronization pattern ($55) (standard baud rate 10,4 kbit/s, other rate is
manufacturer specific). All subsequent communications are using this baud rate. After
sending the pattern, the server sends two keywords (KW) which carry information
about the form of the subsequent serial communications. From these keywords the
tester identifies the diagnostic protocol to be used, ISO 14230-2 or ISO 9141-2. After

class Rs232

class Rs232Iso

class Rs232Private

inherits

uses
Source files:
Rs232_Win32.cpp (1483 lines)
Rs232_Win32.h (208 lines)
main.cpp (113 lines)

void main ()
creates object

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

that the client confirms with sending logical inversion of keyword 2. Then the server
confirms with logical inversion of the address byte. From this time on the
communication link is established and the tester can start to request diagnostic data.

Fig. 3. 5-Baud Initialization

5.2 FAST INITIALIZATION
The fast initialization begins with wake-up pattern (WuP), transmitted by the

tester simultaneously on K and L lines (if provided L line is used, otherwise
transmitted only on K-line) – see Fig. 4. This is implemented in initFast() method by
setting the TxD and RTS , followed by waiting for TiniL time interval and clearing of
these signals. After the time TWuP has elapsed the client sends StartComminication
message request. This message uses functional addressing and contains the target
address of the OBD system and the source address of the tester. The server responds
with StartCommunication positive response(s), which contains the keywords.

Fig. 4. Fast Initialization

6. DATA TRANSFER
After the communication link has been established, the tester can send request

messages and receive message response(s) from the ECU(s) of the OBD system (see
Fig. 5). This is referred to as data transfer and is performed by the transfer() method.
The transfer timing is very important and is determined by the periods P1…P4 with
specified maximal and minimal allowable values. The timing is implemented by
using system timer for wait function and by using communication read timeouts. In
this way it is possible to group received response bytes into messages, based on
separation period P2. The period P3max has value of 5000 ms. After that time the
communication link is automatically terminated by the server. Therefore, to keep
connection alive the tester must send periodically request messages.

StartCommunication
Message request

StartCommunication
Message response

Wake-up Pattern

TWuP (50 ms)

TiniL (25 ms)

Bus idle P2

time

Address

Sync.
pattern

KW 1

KW 2 KW 2 AddressBus idle/
W0/W5
(300...∞)

W1
(60...
300)

W2
(5...20)

W3
(0...
20)

W4 W4
(25...
50)

5-baud 10400 baud (standard)

W0…W5 – initialization timing periods,
min. and max. values are shown in [ms]

Data direction:
From client to server:
From server to client:

time

P3

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

Fig. 5. Data Transfer

7. RESULTS
Bit Slop Times of Interface Adapter
The bit slope times have been measured by sending $55 pattern on K-line: rising

slope time ≈ 1 µs, falling slope time ≈ 0.5 µs. The results comply with the standard.
Initializing communication
The 5-baud initialization has been successfully verified utilizing an ECU from

Rover 25-LHD, model 2003. This vehicle has no L-line. The following data items has
been transferred according to Fig. 3: address = $33, sync. pattern = $55, KW1 = $08,
KW2 = $08, logical inversion of KW2 = $F7, logical inversion of address = $CC.
The keywords inform the tester that the communication protocol is ISO 9141-2. After
that, diagnostic data from the vehicle has been read and interpreted which is
described in [1].

8. CONCLUSION
This paper describes the interface adapter and the initialization of communication

to OBD system using a PC-based diagnostic tester. The tester utilizes the ISO
9141-2 / ISO 14230 (K-Line) interface, which is the most common diagnostic
interface in Europe. The diagnostic software is written in C++. Two variants of
initialization are supported: 5-baud and fast initialization. The tester has been
successfully verified in practice and the results from 5-baud initialization are
provided.

9. REFERENCES
[1] Dzhelekarski, P. and D. Alexiev. Reading and interpreting diagnostic data from vehicle

OBDII system. Submitted for publication at Fourteenth Int. Conference ELECTRONICS’05, 2005.
[2] Dzhelekarski, P., V. Zerbe and D. Alexiev. FPGA implementation of bit timing logic of

CAN controller. IEEE Proceedings, 27th Int’l Spring Seminar on Electronics Technology, 2004.
[3] MSDN Library. Microsoft Corporation, April 2003.
[4] ISO 9141-2. Road vehicles – Diagnostic systems – Part 2: CARB requirements for

interchange of digital information. ISO, 1994.
[5] ISO 14230-1. Road vehicles – Diagnostic systems – Keyword Protocol 2000 – Part 1:

Physical Layer. ISO, 1999.
[6] ISO 14230-2. Road vehicles – Diagnostic systems – Keyword Protocol 2000 – Part 2: Data

Link Layer. ISO, 1999.
[7] ISO/DIS 15031-4. Road vehicles – Communication between vehicle and external equipment

for emissions-related diagnostics – Part 4: External Test Equipment. ISO, 2004.

Tester
request 1

ECU 1
response

ECU 2
response

Tester
request 2

P4 P2 P2 P3P1 time
(5…20 ms) (25…50 ms) (0…20 ms) (55…5000 ms)

ELECTRONICS’ 2005 21 – 23 September, Sozopol, BULGARIA

[8] Norris, J. and A. Reading. Phase 2a report – Evaluation of the significance of OBD/OBM.
Oxfordshire, EMStec/02/026, 2002.

[9] Oliver, J. Implementing the J1850 protocol. Intel Corporation, 1997.

Internet
[10] http://www.planetfall.com/~jeff/obdii/ Jeff Noxon’s Project: Interface RS232 (a laptop

computer) to the ISO 9141-2 / SAE J1962 (OBD II) diagnostic connector. Jeff Noxon, 2003.

