
ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

TIME OPTIMIZED FIXED POINT ALGORITHM FOR UNSIGNED
DIVISION OPERATION IN PROGRAMMABLE LOGICAL

DEVICES

Boyko Baev Petrov

Department of Electronics, Technical University – Sofia, branch Plovdiv, Bulgaria

E-mail: abpetrov@persecteam.com

Keywords: division, verilog, divider, FPGA, CPLD

The division operation is one of the basic arithmetical operations. Unfortunately, the
known hardware description languages HDL such as ABEL, Cupl, VHDL and Verilog don’t
support this operation in their common libraries. For many applications such as linear
interpolation and linear approximation there is a necessary to use division of two signed or
unsigned integer operands. The known method “pipeline divider” is designed by pipeline
architecture and it has a latency time depend of the length of input operands. In many
applications this latency time is unacceptable.

To make division between x (dividend) and (divisor) is equal to find a new value ,

that . To find a value of we suggest using

y z

.z y x= z 1. .xz x x fyy
= = =

()

()y . After numerical

experiment we found that number of different values of f y is not so match - match less
then different values of (in given number of bits per word), so it is not need y to calculate

()f y , but it is useful to choose the value of ()f y from before-calculated table of values.
After these considerations, we suggest the main structure of implementation of this

method is to be a true-table with combinatorial multiplier. The true-table values are before-
calculated values of ()f y .

The method is implemented in HDL Verilog for 8-bit width of . The number of values in
true-table is 57. These values are calculated by Windows based Borland Builder C compiler.
The implementation is made when

y

x is 8-bit word and is 16-bit word – 8-bits for integer
part of the quotient and 8-bits of fractional part of the quotient. The implemented module is
verified by ModelSim verification tool and fitted in CPLD and FPGA Xilinx devices by Xilinx
ISE tool. The post-fit asynchronous delays after fitting shows that clock frequency for Xilinx
XC95288XL device is up to 20MHz and clock frequency for Xilinx Spartan 2 or Xilinx Virtex
devices is up to 125MHz.

z

1. INTRODUCTION
The division operation is one of the basic arithmetical operations. Unfortunately,

the known hardware description languages HDL such as ABEL, Cupl, VHDL and
Verilog do not support this operation in their common libraries. For many
applications such as linear interpolation and linear approximation there is a necessary
to use division of two signed or unsigned integer operands.

At now, a several division methods and algorithms are known:

mailto:abpetrov@persecteam.com

ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

• digit-recurrence method [1];
• multiplicative method [1];
• division algorithm Liddicoat and Flynn [3];
• special methods such as Cordic and continued product methods [1].
• subtractive (restoring, non restoring and SRT) [1], [4];
• multiplicative (Newton-Raphson, Binomial) [1], [2];
• expansion in Taylor and Maclaurin series and other various

approximation methods [1], [7];
• table look up method (bipartite tables) [1];
• division by reciprocation 1. .xz x x fyy

= = = ()y [7].

The implementations of these methods are based on one of the next main
architectures:

• sequential
• combinatorial, where the realization may be done by:

- pipelined organization or
- nonpipelined organization.

• combinatorial/ sequential
For many applications, especially for real-time applications with limited error

factor, it is need to have a method and device for integer signed/unsigned division
that can produce the result of the next active edge of given global synchronous clock
signal.

The variant of look-up table and method by reciprocation and its implementation,
time-optimized for programmable logical device is described in this paper.

2. PROBLEM STATEMENT
To make division between (dividend) and (divisor) is equal to find a new

value , that . To find a value of we suggest using

x y
z .z y x= z 1. .xz x x fyy

= = =

()

()y .

After numerical experiment we found that number of different values of f y is not
so match - match less then different values of y (if different values of y are 256 -
different values of ()f y

(
are 47 only). For realization of this approach it is not need to

calculate values of)f y , but it is useful to choose the value of ()f y from before-
calculated table of values (look-up table). In programmable logical applications, this
table is minimized to simple combinatorial equations for logical realization in single
logical cell for each equation.

After these considerations we suggest the main structure of implementation of this
method is to be a true-table with combinatorial multiplier. The true-table values are
before-calculated values of ()f y . Fig.1 shows the main approach that is realized in
this paper. In Special Cases Recognition module are recognised every one of the next
special cases:

ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

• y x= that is always mean that 1z =

• that is always mean that 1y = z x=

• in all other cases . ()z x f y=
Note, if the value of is postulated to be equal of 0 by look-up table 0y = z

Fig.1. Main approach for divisor realization

As it is can see from fig.1, for gitter minimization after combinatorial realization,

the output value of is formed from output register (gitter-free device),
synchronized by global clock signal.

z

The Verilog implementation of this approach is given here:

module div(in_x,in_y,clk,enb,out_x_y);
input [7:0] in_x;
input [7:0] in_y;
input clk,enb;
output [15:0] out_x_y;
reg [15:0] out_x_y;
reg [7:0] out;

always @ (in_y)
 begin

ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

 casex (in_y)
8'b00000010 : out = 8'h80;
8'b00000011 : out = 8'h55;
8'b00000100 : out = 8'h40;
8'b00000101 : out = 8'h33;
8'b00000110 : out = 8'h2B;
8'b00000111 : out = 8'h25;
.
.
.
8'b10101010 : out = 8'h02;
8'b10101011 : out = 8'h01;
8'b101011?? : out = 8'h01;
8'b1011???? : out = 8'h01;
8'b11?????? : out = 8'h01;
default : out = 8'h00;
 endcase
end

always @ (posedge clk)
 begin
 if (enb)
 begin
 if (in_y == in_x) out_x_y <=16'h0100;
 else if (in_y == 8'h01) out_x_y <={in_x,8'h00};
 else out_x_y <= out * in_x;
 end
 end
endmodule

3. RESULTS
For behavior simulation of Verilog implementation the next test bench module is

written:
`timescale 1ns/100ps
module testbench();
 reg [7:0] in_x;
 reg [7:0] in_y;
 reg clk;
 reg enb;
 wire [15:0] out_x_y;
top_level uut (
 .clk(clk),
 .enb(enb),
 .in_x(in_x),
 .in_y(in_y),
 .out_x_y(out_x_y)
);
 initial begin
// start condition
 in_x = 0; in_y = 1; clk = 0; enb = 0;

ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

// set the input operands and control signals
#4 in_x = 8'h3c; in_y = 8'h01; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'h3c; in_y = 8'h02; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'h3c; in_y = 8'h03; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'h3c; in_y = 8'h04; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'hff; in_y = 8'h0d; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'h2f; in_y = 8'h2f; clk = 0; enb = 1; #4 clk=1;
#4 in_x = 8'ha4; in_y = 8'h07; clk = 0; enb = 1; #4 clk=1;
 end
endmodule

This module are implemented by Xilinx ISE [8] synthesis tool and tested by
ModelSim [9] verification tool. The test conditions are shown in Tabl.1. and the
waveform of simulation are shown in Fig.2

Tabl.1
Test number Dividend Divisor Right result Obtain result

1 0x3C 0x01 0x3C00 0x3C00
2 0x3C 0x02 0x1E00 0x1E00
3 0x3C 0x03 0x1400 0x1400
4 0x3C 0x04 0x0F00 0x0F00
5 0xFF 0x0D 0x139D 0x13EC
6 0x2F 0x2F 0x0100 0x0100
7 0xA4 0x07 0x176D 0x17B4

This module has fitted in some of FPGA and CPLD Xilinx devices and the fitting
results are shown in Tabl.2.

Tabl.2
parameter Cells-CPLD

Slices-FPGA
Percent of

usege
Max delay of
global clock

Max global clock
freguency

XC2C256 107 42% 105.7ns 9.5MHz
XC2S150-5 77 4% 7.748 ns 129MHz
XC2V250-6 35 2% 9.535 ns 105MHz

Fig.2. ModelSim behavior simulation window

ELECTRONICS’2004 22-24 September, Sozopol, BULGARIA

4. CONCLUSIONS
According these (and others not shown here) results, it is can reach conclusion

that now suggested method has the next advantages and faults:
- single cycle operation;
- can be fitted in many FPGA and CPLD logical devices;
- existing of error in remainder that make it unusable.

In conclusion this method can be use in real-time non critical error integer
application such as signal processing, linear approximation, linear interpolation and
many other tasks.

5. REFERENCES
 [1] Milos D. Ercegovac, Tom_as Lang. DIGITAL ARITHMETIC, Computer Science
Department University of California Los Angeles and Department of Electrical and Computer
Engineering University of California at Irvine, Viewgraphs Copyright 2003, Elsevier Science 2004,
Morgan-Kauffman Publishers 2004 http://www.cs.ucla.edu/digital_arithmetic/files/

[2] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen, Jeff Draper. A 0.18µm
IMPLEMENTATION OF A FLOATING-POINT UNIT FOR A PROCESSING-IN-MEMORY
SYSTEM, USC Information Sciences Institute 4676 Admiralty Way, Marina del Rey, CA 90292,
U.S.A.

[3] Marc Joye and Karine Villegas. A Protected Division Algorithm, P. Honeyman, Ed., Fifth
Smart Card Research and Advanced Application Conference (CARDIS ’02), pp. 69–74, Usenix
Association, 2002.], Gemplus Card International, Card Security Group La Vigie, Avenue des
Jujubiers, ZI Athelia IV, 13705 La Ciotat Cedex, France http://www.geocities.com/MarcJoye/
http://www.gemplus.com/smart/

[4] David L. Harris, Stuart F. Oberman, and Mark A. Horowitz. SRT Division Architectures and
Implementations, Computer Systems Laboratory, Stanford University, Stanford, CA 94305
fharrisd, oberman, horowitzg@leland.stanford.edu; dh_arith_97.pdf

[5] M. J. Flynn. Multiply iteration and an introduction to Divide, Computer Architecture &
Arithmetic Group, Stanford University http://www.uspto.gov/patft/index.html
 [6] Jen-Shiun Chiang, Hung-Da Chung and Min-Show Tsai. Carry-Free Radix-2 Subtractive
Division Algorithm and Implementation of the Divider, Department of Electrical Engineering
Tamkang University Tamsui, Taipei, Taiwan, Tamkang Journal of Science and Engineering, Vol. 3,
No. 4, pp. 249-255 (2000), pp 249-255
 [7] Mary Jane Irwin. Computer Arithmetic, CSE 575, MJIrwin, PSU, 2002
 www.cse.psu.edu/~mji/cse575-convergencedivide.pdf
 [8] www.xilinx.com
 [9] www.modeltech.com

http://www.cs.ucla.edu/digital_arithmetic/files/
http://www.geocities.com/MarcJoye/
http://www.gemplus.com/smart/
http://www.buginword.com
www.cse.psu.edu/~mji/cse575-convergencedivide.pdf
www.xilinx.com
www.modeltech.com

