
ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

FPGA IMPLEMENTATION OF ARTIFICIAL NEURONS 

Ognyan Manchev, Blagomir Donchev, Kostadin Pavlitov 

ECAD Laboratory, TU – sofia, 8 Climent Ochridsky str, 1700, Sofia, Bulgaria, phone: +359 2 
9652190, e-mail: manchev@ecad.tu-sofia.bg, donchev@ecad.tu-sofia.bg, knp@tu-sofia.bg   

Keywords: neural network, VHDL, field programmable gate arrays (FPGA), 
XILINX. 

This paper presents the design of a digital artificial neuron, which is the base building 
block of modern systems for classification and recognition, called Artificial Neural Networks. 
The authors outline the benefits of programmable devices in use today and present an 
effective approach to designing parallel computing units and implementing them into FPGA 
devices. A digital neuron is developed and implemented in a Xilinx® FPGA. 

1. INTRODUCTION 
Controlling modern systems is a difficult to implement task. The number of 

controlled parameters and monitored values is greatly increasing and present means 
of computing become unusable, inefficient or inadequately expensive. Conventional 
computers suffer the lack of I/O connections, speed and stability in the area of 
industrial applications, parameter control, optical or sound recognition.  

An interesting approach to solving problems concerning multiple input parameter 
handling and noise – resistance is processing data the way the human brain does. The 
brain is a highly complex, nonlinear and parallel information processing system with 
the capability of organizing neurons (basic processing units) such as to perform these 
computations on a speed, greater than the speed of the fastest algorithmic machine 
existing today. The neuron – a basic cell of this parallel computer comprises of 
receptors (dendrites), computing body (core) and synaptic connections to adjacent 
neurons. Synaptic connection properties define how the brain processes particular 
input information. The organization of these connections is referred to as knowledge. 

A computational system modeling the way the brain processes information is 
called Artificial Neural Network (ANN) and therefore its components are called 
artificial neurons. Artificial neurons are organized in layers. Cascaded layers form an 
ANN which can classify objects or perform signal processing tasks. 

Differences in principles of operation of conventional algorithmic computers and 
ANNs define fields of application for both of them. While algorithmic approach can 
be used to do explicitly defined tasks, such as word processing or accounting, parallel 
processing structures manage incompletely defined problems, concerning signal 
processing, sound and image recognition or shape classification. 

Results from a comparison between conventional computers and neural networks 
can be summarized in the following table: 

 
 

mailto:manchev@ecad.tu-sofia.bg
mailto:donchev@ecad.tu-sofia.bg
mailto:knp@tu-sofia.bg


ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

Characteristics Conventional computers Artificial Neural Networks 
Popularity Well known In development 
Methods for 
implementing 
knowledge 

Developed algorithms Specific education 

Learning method By rules By example 
Processing style Sequential operation Parallel processing 

Result generation Decision reproduction Generalization 
Speed Require big  

processors 
Require multiple custom-built 
chips 

Attitude to noise Noise – sensitive Noise – tolerant 
Error-proof Susceptible to input errors 

and faults 
Fault – tolerant 

Field of application Explicitly defined tasks 
(accounting, word 
processing, math) 

Outlined problems (Sensor 
processing, speech recognition, 
image recognition) 

Table 1 - ANNs vs algorithmic machines 

Table 1 is based on the following properties and capabilities of ANNs [1]: 
Nonlinearity; - 

- 
- 
- 
- 
- 
- 
- 
- 

Input – output mapping; 
Adaptivity; 
Evidential response; 
Contextual information; 
Fault tolerance; 
VLSI and PLD implementability; 
Uniformity of analysis and dsign; 
Neurobiological analogy. 

The next section describes the functional description, mathematical model, 
functional blocks and interface signals of the neuron. Section III contains results from 
behavioral and timing simulation, and Section IV, the conclusion. 

2. FUNCTIONAL DESCRIPTION 
2.1. Mathematical model of an artificial neuron 

 
Figure 1 - Mathematical model of the neuron 

Fig. 1. represents the common mathematical model of an artificial neuron. The 
linear combiner ∑ forms the activation potential n – linear product of inputs x1 - xr 



ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

and corresponding weights wi1 – wir. Threshold b is then applied to form the input of 
the activation function φ. Network performance depends strongly on the type of this 
function, which may be threshold, linear or sigmoid. Equation (1) describes 
analytically neuron behavior: 

∑
=

−=
R

j
ijiji bxwy

1
)(ϕ  (1), 

where i denotes the number of particular neuron, xij and wij – inputs and their 
weights. 

2.2 Neuron structure 
Developed neuron block structure, shown on Fig. 2, resembles the mathematical 

model. Inputs A1 and A2 are multiplied by corresponding weights w1 and w2 and 
products are added to the threshold b. The activation function is applied to the linear 
product and forms the output Y. 

 
Figure 2 - Block diagram of the neuron 

Neuron modules work as follows: 
Multiplier: 
The multiplier performs fast multiplication of two eight – bit signed binary 

numbers, considering the most significant bit as the sign and setting the most 
significant bit of the product in accordance to the seventh bits of inputs. 
Multiplication is performed on the rest of the bits. 

The multiplier generated by the synthesizing software utilizes fast carry logic in 
Xilinx® FPGA. This special logic in modern FPGA circuits allows multiplication in 
just one clock cycle. Hardware pre – implemented pipelined multipliers in high – end 
platform FPGAs perform even faster multiplication for DSP designs. 

Macros generated by synthesis tool:  
7x7-bit multiplier: 2 
Adder 
The adding circuit produces a linear product of input vectors and corresponding 

weights to form the activation potential n. Numbers are represented in two’s 



ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

complement format, eight bit each for both inputs and output. The first adder operates 
on neuron information inputs and its output is added to the threshold of the neuron.  

Adding circuits are recognized and implemented by synthesis tool, inferred 
macros: 

8-bit adder: 2 
Hyperbolic tangent 
This artificial neuron uses hyperbolic tangent as its activation function. 

Hyperbolic tangent is defined by the expression 

nn

nn

ee
een −

−

+
−

=tanh   (2), 

where n is the activation potential (linear product of inputs and weights). 
Hyperbolic tangent can be implemented using look-up table. Values for the 

activation potential in the interval (-5,5) are observed to form the following table: 

№ n tanh(n) n 16 tanh(n) 16 № n tanh(n) n 16 
tanh(n) 
16 

1 0 0 $00 0 17 2,5 0,986614 $40 1A 
2 0,15625 0,154991 $04 4 18 2,65625 0,990189 $44 1A 
3 0,3125 0,30271 $08 8 19 2,8125 0,992813 $48 1A 
4 0,46875 0,437189 $0C B 20 2,96875 0,994737 $4C 1A 
5 0,625 0,5546 $10 E 21 3,125 0,996147 $50 1A 
6 0,78125 0,653424 $14 11 22 3,28125 0,997179 $54 1A 
7 0,9375 0,734072 $18 13 23 3,4375 0,997936 $58 1A 
8 1,09375 0,798243 $1C 14 24 3,59375 0,998489 $5C 1A 
9 1,25 0,848284 $20 16 25 3,75 0,998894 $60 1A 
10 1,40625 0,886695 $24 17 26 3,90625 0,999191 $64 1A 
11 1,5625 0,915825 $28 17 27 4,0625 0,999408 $68 1A 
12 1,71875 0,937712 $2C 18 28 4,21875 0,999567 $6C 1A 
13 1,875 0,954045 $30 18 29 4,375 0,999683 $70 1A 
14 2,03125 0,96617 $34 19 30 4,53125 0,999768 $74 1A 
15 2,1875 0,975137 $38 19 31 4,6875 0,99983 $78 1A 
16 2,34375 0,981749 $3C 1A 32 4,84375 0,999876 $7C 1A 

Table 2 - hyperbolic tangent values 

Column n lists discrete decimal values of the activation potential. Values are 
chosen by estimating the hexidecimal equivalent of their fraction and skipping three 
numbers. n16 lists n in hex format, while tanh(n) and tanh(n)16 represent function 
output in both decimal and hexidecimal numbers. 

Table 2 is used as truth table for an eight – bit decoder, implementing the 
hyperbolic tangent function (referred to as “tansig” in Matlab™). The table suggests 
the following optimizations: 

Input value 0x3C leads the function into saturation (1A) therefore the sixth bit 
of the argument can be ignored; 

- 



ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

Output is in range (0x00, 0x1A). Bits six and five can be tied to zero; - 
- 

- 

The function is odd, so negative outputs are equal to positive ones, changing 
their most significant bit (sign). The sign bit of the function is tied to the 
seventh bit of n. 
A block RAM implementation of the hyperbolic tangent saves FPGA cell 
resources. In the current design target device – the Xilinx® Spartan™II FPGA 
the ten SelectRAM modules enable fast table lookup tanh computation and 
decrease occupied area. 

2.3. Interface 
Name Direction Description 
Ai1 (7:0) In Input 1 
Wi1 (7:0) In Weight 1 
Ai2 (7:0) In Input 2 
Wi2 (7:0) In Weight 2 
Bi (7:0) In Threshold 
ldAB In Valid input 
clk In System clock 
rst_b In System reset 
Yi (4:0) Out Output 
Flag_signed Out Output sign 

Table 3 - Artifical neron interface 

Table 3 lists the module interface. Input and output busses are eight – bit wide, 
representing signed binary numbers. Control signals are operated as follows: 

Clk: System clock signal. All input signals are registered with respect to clk; 
Rst_b: Asynchronous system reset. Rregisters are reset regardless of clk value; 
ldAB: Inputs are valid when ldAB is high; 
3. SYNTHESIS AND SIMULATION RESULTS  

 
Figure 3 - Timing simulation results 



ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

Fig. 3 presents timing simulation of the VHDL model. Measured time is the 
maximum output required time after clk tout=7ns. Table 4 summarizes device resource 
usage and timing parameters. 

Parameter Value 
Device Utilization  
Number of External IOBs 48/ 140 ( 34%) 
Number of SLICEs 86/1200(   7%) 
Number of GCLKs  1/       4 (25%) 
Timing summary  
Maximum Frequency 93.923 MHz 
tsetup 10.961 ns 
thold 5.140 ns 
Maximum output required 
time after clock 

max 7.589 ns 

Clock to setup 11.047  ns 
Table 4 - Synthesis results 

4. CONCLUSION 
This article presents the structure of common artificial neurons, the development 

of a two-input eight-bit digital artificial neuron and its implementation in an Xilinx® 
FPGA device. This platform provides a multitude of benefits for implementing ANNs 
such as incorporating an ANN and a control circuit in a single chip, generation of IP 
core library and operation at high frequencies. The neuron module’s maximum 
frequency is over 90MHz and resource utilization summary shows that an artificial 
network comprising five to ten neurons can be implemented in a typical FPGA chip. 
These results ensure that the developed neuron can be used as a building block for 
modern control systems comprising of ANNs of the Feed-forward – Back-
propagation type. 
 

5. REFERENCES 
[1] Hagan, M.T., Demuth, H.B., Beale, M., Neural Network Design, PWS Publishing Company, 

Boston, 1995. 
[2] Cichoski, A., Unbehauen, R., Neural Networks for Optimization and Signal Processing, 

John Wiley & Sons, New York, 1994. 
[3] Haykin, S., Neural Networks – A Comprehensive Foundation, Macmillan College 

Publishing Company, NY, 1994. 
[4] Pavlitov, K., Application of the Spartan II FPGA circuits in artificial neural network 

realizations. 
[5] Pavlitov, K., Xilinx Spartan II Library Module Signed Multiplier. 
[6] Pavlitov, K., Nonlinear TanSig Converter Based on Spartan II Xilinx FPGA. 


