
ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

NETWORK DRIVER FOR COMMUNICATION IN SPV INDUSTRIAL
NETWORK

Georgy Slavchev Mihov1, Stanimir Damyanov Mollov1,
 Ratcho Marinov Ivanov1, Stoyan Nikolov Jilov2

1 Faculty of Electronic Engineering and Technologies, TU – Sofia, 1797, Sofia, Bulgaria,
e-mail: gsm@tu-sofia.bg, smollov@abv.bg, rmi@tu-sofia.bg

2 SPV Ltd. Rakovsky 135, 6000, St. Zagora, Bulgaria, e-mail: spv@abv.bg

Keywords: network driver, industrial network, queue, buffer, message stream
In the present paper the development of a network driver for communication in SPV

industrial controllers has been discussed. The hardware/software approach for realisation of
the network driver is offered. The network driver realises all functions of sending and
receiving, protecting times in industrial network, the repeating of the message when an error
occurs and the solving of the conflict situations. In additional, the organisation of the
receiving and the transmitting of the stream of messages are discussed. Possibilities for
existing conflict situations have been analysed. The variants for their overcoming are offered.
The proposed network driver could be used as a universal solution for industrial
communication driver, which is moved outside of a personal computer.

1. INTRODUCTION
A driver for local array networking for industrial purposes have to provide all

functions of sending and receiving of messages, supporting of protected times,
repeating of messages in case of errors occur etc. [1]. Two ways for network driver
realisation exists: almost software and combined hardware/software. In the
software way of the realisation, the network driver is fully built in the controller
environment, and the operating system of the controller serves it. In the
hardware/software way of the realisation an additional processor for the
communication supporting is included (communication processor).

The connection between the main processor and the communication processor
could be realised as followed:

– Via a common memory or a common system bus;
– Via parallel interfaces (ISA, PCI);
– Via serial interfaces (RS232, USB);
In the present paper a variant of network driver realised by using of a serial

interface RS232 is offered. The network driver is used for connecting the personal
computer to the SPV industrial network. The physical environment for
communication in this network is based on interface RS485. Due to this solution the
network driver have to be included in the structure of a bridge converter RS232 –
RS485. The existing solutions of such converters are strictly specialized, depending
of the specific protocol used for communication. The proposed solution of the
network driver provides the connection of the personal computer to the industrial

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

network to be based on the SPV protocol [2].
The messages in the network may be received one after another with a faster

speed than the system is able to process them. That requires the network driver to
provide special buffers for messages. Usually FIFO buffers, organized as queues, are
applied for message buffers. In the present paper, besides the basic actions with the
queue, so-called procedure for holding the new message when the queue is full is
included.

Each message is written in additional (input) buffer before to be entering into the
queue. The next new message is received after the old message from this buffer has
been transferred to the queue. In this situation a silent time before receiving a new
message is inserted. A new solution, which decreases this silent time, is offered.

2. ENTRY POINTS OF THE NETWORK DRIVER
 The network driver has the following entry points that are shown on Fig. 1.

Interrupt from the system timer.
The control is given in this point in
case of an interrupt from the system
timer is received. This entry point just
modifies the counters of protected
times and checks whether protected
times are passed or not.

Interrupt from the serial port.
This is the interrupt from the serial
port, which submits request when a
symbol is received by the network or
when a symbol is sent via the network.

Initialisation of the network –
This entry point is being used for
initial initialisation of the serial port.

i

m
s
m
s

t
o
t
s
m
i

Fig. 1. Entry points of the network driver.

The receiver and the transmitter are set

n inactive states.
Start of receiving – This entry point sets the address of the input buffer and its

aximum length and also sets the receiver in an active mode. After that the receiver
tarts to watch the line and to receive the messages for the station. After some
essage is received the receiver marks this fact by setting appropriate flags in the

tate’s word and goes into end of receiving mode.
Start of transmission – This entry point is activated only in case of inactive

ransmitter (the transmission of the last message is finished). The address of the
utput buffer, the length of the message and the recipient are initialised. The
ransmitter checks whether the line is busy or not and when the line is being free for
ome time it starts the transmission of the message. After the transmission of the
essage is finished the transmitter sets appropriate flags in the state’s word and goes

nto inactive mode.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

3. HARDWARE REALIZATION OF THE NETWORK DRIVER
The necessary parameters of the microprocessing system for realisation of the

offered network driver are microcontroller, two serials port, RAM with size about
16KB (for input and output queues) and ROM (for the program memory).

In the present solution a microprocessing system based on microcontroller
MC68HC11 is used (Fig. 2). The used microcontroller has only one embedded serial
communication interface (SCI). The solution needs two SCI. There exists two ways
for the realisation of a secondary SCI:

– Software emulation of the SCI;
– Hardware/software approach by using a secondary microcontroller.
The software emulation of the serial port requests a lot of time resource of the

processor. This is the reason that in the present solution a hardware/software
approach has been used. Microcontroller PIC16F876 is chosen for secondary CSI
realising. The connection between two microcontrollers is realised via SPI interface.
A galvanic isolation between personal computer and industrial network is applied
with appropriate opto-couples. The power supply of the galvanic isolated part from
the PC side is supported by an external source. The industrial network supplies
another part of the network device.

Fig. 2. Hardware/software building of the network driver device.

4. SOFTWARE REALIZATION OF THE NETWORK DRIVER
Multitask system controls the driver for the local array network. Basic program

units of the network driver are actions. Action is an independent program that works
under management of the network driver. Basic communication units of the network
driver are events. Each action waits a specific event or generates an event.

4.1 Data structures for communications between actions
Used data structures for communications between actions are flags and queues.

Flags are realised as states of bits of a byte in the data memory. Queues are used for
message exchange between actions. Queues are buffers between actions. They
prevent the data lost in case of message received before the previous is treated.

A queue is a data structure that consists of memory array and two pointers: input
pointer and output pointer (Fig. 3). The movement of pointers is accomplished just in
one direction. When the pointer goes to the last address of memory array it comes
back to the beginning of the memory array. Basic actions of the queue are:

– Entering a message into the queue;
– Bringing out a message from the queue;

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

– Checking-up for the empty queue;
– Cleaning the first (oldest) message from the queue.
A critical situation may occur when the free space in the queue is smaller than the

message length. In this case the action that sends the message may proceed in two
ways – refusing the processor time and waiting for freely space into the queue or
cleaning the oldest messages and entering the new message into the queue.

The network driver of a slave station is
allowed to clean the first message in the queue in
case of full queue. Otherwise the network driver
of the master station is not allowed to reject the
oldest message. In this case so-called holding
the new message is applied. After receiving the
new message the action-receiver checks its
length and if the free space in queue is enough
for the message. If the space is enough the
message is put into the queue and a positive
acknowledge is sent to the transmitted station.

a

s
in
tr

r
a
tr

n
n
a

Fig. 3. Queue functioning.

Otherwise, in case of space deficiency negatives

cknowledge is sent to require the transmitted station for the last message repeating.
4.2. Transmitting the messages via network
The developed network driver is applied for the SPV industrial network [1]. If the

ending message is big and does not fit in one transmitted block its transition is done
 several blocks. The separation in small-transmitted blocks has an advantage if a
ansmission error occurs only the wrong block has to be transmitted again.

All actions of the network driver have their
protected times. If the sender does not receive a
positive acknowledge in a definite time it sends
again the current block. The driver processes each
received symbol. In the receiving mode it watches
whether the line is busy and whether the message is
destined for this station. In the transmission mode
the driver watches also whether the received
symbol is the same to the sent one. A conflict
situation may occur when more than one station
starts transmission at the same time. To get out this
Fig. 4. Always enabled receiver.

conflict each sender listens and compares for a

ight transmission (Fig. 4). In case of difference the sender interrupts the transmission
nd sends a BREAK signal (supports the conflict). Each sender restores the
ansmission after a protected time that depends of the station address.

To increase the effectiveness of the data exchange speed the input buffer of the
etwork driver is realised as shown on Fig. 5. After each received message, the
etwork driver changes alternatively input buffers. So, a new message is allowed to
rrive before the previous message is translated from input buffers to the input queue.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

5. STREAM MESSAGES ORGANISING
The processing of the stream messages is done coincidentally with the system’s

normal work. For receiving, buffering, transmitting and processing of messages
several actions are carried, as shown in Fig. 6. Queues A and B are used for the
communication between the actions.

Fig. 5. Input buffers organising.

5.1. Working actions under network driver management
 Receiver – This action activates the receiver of the network driver and checks the

message after its receiving. If there is no message the action-receiver gives up its
processor time to the other actions. If a message presents in the input buffer IBUF the
action transfers it into the queue A.

Fig. 6. Treating of messages in the industrial network.

Transmitter – This action checks whether the queue B is empty or not. If empty
the action gives up its processor time to the other actions. If the queue B is not empty

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

a check is done whether the transmitter of the driver is active. If the transmitter is
active the action-transmitter waits while the transmission of the last message will
finish. After the finish the message is translated to the output buffer OBUF and the
transmitter of the driver comes to the active mode.

5.2. Working actions under controlled program management
Interpreter – This action checks whether the input buffer ICBUF is empty. If it is

not empty the action-interpreter gets the message and processes it. The message may
be addressed to the main station or to a slave station. If the message is addressed to
the main station the action-interpreter prepares a reply message and sends it into
OCBUF. Otherwise this action translates the message to the CBUF.

Receiver – This action checks whether a message is presented in CBUF. If no
message presents the action-receiver checks whether in the queue B has enough free
space. If there is not enough free space for the message, a negative acknowledges is
replied. If the space is enough the action extracts the message and put it into the
queue B and a positive acknowledge is replied.

Transmitter – This action checks whether the queue A is empty or not. If not
empty the CBUF is checked whether it is full and if it is not full the action extracts
the oldest message from the queue A and put it into the CBUF.

6. CONCLUSIONS
The proposed network driver realises all sending and receiving functions,

protected times, repeating when an error occurs. It could be used as universal solution
for industrial communication driver that is moved outside of a personal computer.

The developed driver has been used as equipment for the master station of SPV
industrial network. Therefore, the driver does not allow cleaning the oldest message
from the queue, when the queue is full. That requires supporting holding mode for the
new message.

To increases the effectiveness of the data exchange speed, the receiver of the
network driver is activated before message to be transferring from input buffer IBUF
to the input queue A.

7. REFERENCES
[1] Tashev, I. Methods, devices and systems for collecting and transformation of an

information. Book for remote education. Teshnical University - Sofia, 1997 (in Bulgarian).
[2] Dimitrov, E., G. Mihov, I. Tashev, M. Mitev, Local array network for industrial controller,

Proceedings of the Int. Scientific Conference ENERGY AND INFORMATION SYSTEM AND
TEHNOLOGIES, . vol. 3 pp. 608-613, June 7- 8, 2001, Bitola, Macedonia.

[3] Herbert, F. Implementing Network Protocols and Drivers – with STREAM. Embedded
Systems Programming, p.28, April, 1997.

[4] Herhandez, E., Chidester, and A. George, “Adaptive Sampling for Network Menagement”,
Journal of Network and System Management, Journal Publ. from the HCS Research Lab, 1999.

[5] Ovcharov, St. Automation of the electronic industry. Teshnical University – Sofia, 2004.

The paper has been reviewed by Associate Professor Ph.D. Stefan Ovcharov from
department of Electronics, Technical University – Sofia.

