ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

DEVELOPED ENVIRONMENT FOR ADJUSTMENT AND
DIAGNOSTICS OF SPV INDUSTRIAL CONTROLLERS

Stanimir Damyanov Mollov
Faculty of Electronic Engineering and Technologies, TU — Sofia, 1797, Sofia, Bulgaria,

E-mail: smollov@abv.bg
Keywords: adjustment, diagnostics, debugger, controller

The paper presents a developed environment for adjustment and diagnostics of SPV
industrial controllers. The developed environment is a part of the software for personal
computer. It provides all operations related with loading, adjustment and diagnostics of the
controller’s software and may communicate both control and debugger programs embedded
in each of SPV industrial controllers. To accomplishing the communication between a
personal computer and controllers is used a hardware-software network driver, which
realizes all function related with receiving and transmitting the messages via industrial
network. The developer environment is compatible with all Windows operating system. It is
realized on high level program language Visual C++.

1. INTRODUCTION

Nowadays, the tendency in automated systems is to be based on personal
computer as applied so-called centralized management (fig.1). This management is
characterized with a request sending from the master station to the some slave station.
By this way, the task of slave module is to identify the request from the master station
and to replay at a fixed time interval. The master station, considering the specified
necessity, defines the order of requests.

@ \Bridge Convertor
T 4

. | EN— I | I—
—1 PLCI1[] {— PLC2[] — PLCn[]
1 1 1

Fig. 1 Centralized menagement

Usually the main station consists of a personal computer, which is used as for
acumodating and processing the information, as well as assistance instrument for
adjustment and diagnostics of the slave modules. In the present paper the developed

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

environment for adjustment and diagnostics of SPV industrial controllers have been
discussed. The developed enviroment is compatible with all Windows operating
system and it is realized on high level language Visual C++.

2. DTAGNOSTIC FUNCTIONS EMBEDED IN SPV CONTROLLERS

The main idea, developed in the building of an industrial network with SPV-
controllers, is that all operations, related with control, adjustment and diagnostics, to
be performed in the same network [1]. For this purpose the software of the controllers
must include: control (user) program and a program for adjustment and diagnostics —
debugger. The control program and debugger must work. To perform this condition,
it is necessary the debugger to be provided with own network driver and to does not
use the network driver of the control program.

Including diagnostic functions in the network requires keeping exact rules. These
rules determine the conception: each correspondent in network has to have an own
name. The main station has the name ‘A’. The control information part of the
information system is organized between controllers used capital letters from D to Y
as a name. The controller, which enters into diagnostic functions, is identified as a
controller with name ‘C’. Such controller cannot perform control and information
functions at the same time.

{
C T D T B
= Ay NSy
— PLC I [] — PLC2[— PLCn (]
1 | — 1

Controller in
debugger mode

Fig. 2 Conception for correspondents naming

The developed environment for adjustment and diagnostics as a part of the
software for the personal computer should communicate both control program and
debugger embedded in each one of SPV controllers. To accomplish the
communication between master station and slave stations in the industrial network is
used a hardware/software network driver (fig.2). The network driver realizes all
functions of receiving and sending of the messages, protecting times, repeating of the
message when an error occurs and solving the conflict situation in the industrial
network. By this way the hardware/software network driver in fact is the master
station in the industrial network.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA
3. DEVELOPED ENVIRONMENT FOR ADJUSTMENT AND DIAGNOSTICS

The developed environment for adjustment and diagnostics realizes two kinds of
operations. On one hand these are the operations of loading, adjustment and
diagnostics of the applied program. On the other hand these are the operations for
processing of the parameters of the control program. The place of the developed
system into the composition of control informational system is shown on fig. 3.

e -

' Developed Environment !

User interface service |[d———»

User Defined
Messages

1

i Network ! ™ PLC T]
! . ! 1

1 Driver |

i ——

Serial communication ! |
service +— @‘ g pLeag

Y

I
1
I
I
1
1
!
Flags !
I
I
I
1
I
I
1
1

5 g g

Fig. 3 Developed environment and its two processes

Developed environment for adjustment and diagnostics is realized as used so
called multi-thread method. This method allows several processes to work at the
same time under management of the computer operating system. In this case are used
only two simultaneous worked processes. The first one (main process) services the
communication with operator. The second one is managed from main process and
services the serial communication interface. This imposes existence of a
communication channel between these two processes. In the present work the
communication channel is consist of flags and messages.

4. FUNCTIONS FOR SERIAL COMMUNICATION SERVICE

The developed enviroment is realized on high level language Visual C++ and
used the standart API function for serial communication. These functions are two
kinds:

- The functions for serial port configuration;

- The functions for communication via serial port.

4.1 Functions for serial port configuration

Creating a port handle

The serial port's handle is a handle that can be used to access the object of serial
port. The function that is used to create the serial port handle is the CreateFile

function. The following code shows the function that is used to create a handle:
hComm = CreateFile("COMI1", // Specify port device: default "COM1"
GENERIC READ | GENERIC WRITE, //Specify mode that open device.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

0, // the devide isn't shared.

NULL, // the object gets a default security
OPEN_EXISTING, // Specify which action to take on file.
0, // default.

NULL); // default.

Restoring a configuration

The restoration of serial port configuration is getting current configuration at
control device. The configuration of serial port includes parameters that are used for
setting a serial communications device. The GetCommState function is used to get
the current device-control and then fills to a device-control block (a DBC structure)

with the current control settings for a specified communications device:
GetCommState(hComm,&m_dcb)

Modifying a configuration

m_dcb.BaudRate = CBR_9600; // Specify the baud rate
m_dcb.ByteSize = §; //Specify the number of bits for byte
m_dcb.Parity = NOPARITY; //Specify parity

m_dcb.StopBits = ONESTOPBIT; //Specify stop bits

Storing a configuration

The next step is the storage of the new configuration that is modified already into
device control. To store is used SetCommState API function. This function
configures a communications device according to the specifications in a DBC
structure. The function reinitializes all hardware and control settings.

SetCommState(hComm,&m_dcb)

Setting a Time-Out communication

The final step in serial port opening is setting communication Time-out by using
the COMMTIMEOUTS data-structure and calling SetCommTimeouts function.
m_ComOuts.ReadInterval Timeout = 20; //Specify time-out between charactor for receiving.
m_ComOuts.ReadTotal TimeoutMultiplier = 10; //Specify value that is multiplied by the requested
number of bytes to be read
m_ComOuts.ReadTotalTimeoutConstant = 10,/Specify value is added to the product of
theReadTotalTimeoutMultiplier member
m_ComOuts.WriteTotalTimeoutMultiplier = 10; // Specify value that is multiplied by the requested
number of bytes to be sent.
m_ComOuts.WriteTotalTimeoutConstant = 10; //Specify value is added to the product of the
WriteTotal TimeoutMultiplier member

SetCommTimeouts(hComm,&m_ComOuts) // Set the time-out parameter into device control
4.2 Functions for communication via serial port
Sending data

The WriteFile function is a function used to send data in serial port
communication.

WriteFile(hComm, // handle to file to write to
outputData, // pointer to data to write to file
sizeBuffer, // number of bytes to write

&length, NULL) // pointer to number of bytes written
Receiving data
The ReadFile function is the function that handles reading data via serial port.
ReadFile(hComm, // handle of file to read

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

inputData, // handle of file to read
sizeBuffer, // number of bytes to read
&length, // pointer to number of bytes read
NULL) // pointer to structure for data

5. DEMONSTRATION PROGRAM FOR WORK WITH SPV
CONTROLLERS

The demonstration program provides full control over SPV industrial controllers,
which include:

Loading, adjustment and diagnostics of the software of the controllers;
Management the work of the controllers (start and stop);

Change the parameters and the name (address) of the controllers;

Cyclical inquiry and displaying the data from all controllers in the network (so
called an information system).

The result of the demonstration program work is shown on fig.4. In this case, the
slave controller works in the debugger mode. The command, which may be executed
in this mode are:

- loading the user program from a file;

- writing the user program or a memory area into file;

- reading and displaying the memory area;

- memory modification;

- make a copy of the memory area.
I [=1 4

DEMOHCTPALUWOHHA NPOTPAMA 3A PABOTA C SPV KOHTPOJEPH

CepueH nopr:
Femaing |E0nected
CrigHa Ha kOHTpOEpa | Terkyw koHTponep: E BEdE
PenakTHpaHe | OTeapAHe |
Cron Ha MalWHaTa | CTapT Ha MallkHaTa |
TpaHcMpaHe | 3aTBapAHE |
CriaHa Ha No3MEHE l 0fpatioTk.a Ha CECTOAHMA |
3anuTEaHE 33 NPUCHCTEWE | Q6padoTka Ha napareTpr |
HWH$opMaULHOHHE CHETEMA | 06paSoTE.a Ha LaHHW |
Wzxon TpaHCnapaHTer peski | MzuucTeate Ha TepruHana |
MpreTo crobweHue:
DEEUE FOR MCOCE2HC11, TU-30FIA, Z001
=
0000 13 AC AF AB AE 77 4F A6 60 9B Z& 53 22 3B 92 04 .,/ /+.wO&".*8"; ..

0010 D3 72 OE 52 BA 81 DB A3 18 Aa AR AC BB A3 1A 4B 8r.R:.[#.*(,.#.E
0020 A3 D? 33 AR 72 E0 ZF A& 62 D1 72 0D 44 FE 82 62 #¥3(z /*bQr.J..h
0030 BC 6B SF 93 FO F8 84 FC OF 14 A5 50 a8 49 BB 65 <k..px.|..%.(I;e
=

K.omaHaa 5a MaNpallaHe:

h 0000 0030

|—35pe>maHe Ha dafin: —‘

| Teryw pen; |

Fig. 4 Slave station into debugger mode

Mauon

The commands are written in the bottom edit box. After pressing the ENTER key
each command is included in the packet structure of the previously defined protocol
[2]. After this the message is sending via serial port. The received answer is displayed

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

in upper edit box. It is consist of only usefully part without service part of the
received message

The result of the work of the demonstration program as an information system is
shown on fig.5. In this mode the main station in the network cyclical inquiring and
displaying the data from the all controllers in the network.

76! 1) I : ==

JlaHHW OT KOHTpPONepuTe I § _2(__| HTPONEPH
WHENERTOP & MeaHd Kack MHenekTop 38 cuyneHi STk 0 Cepme nopr: -
: iﬁonected
Byrinki: |144 BrnesHani QT IdE M5
- B AKTUpaHE Hireapsike |
Kacu: IG CuyneHH GyTHARM: |D p |
- . IAHE NHpEHE: 3 3 |
HermsaHu kack: 14 HanesHand GyrHnk: |34 D 2 | Fiarins
Maneri: ID Hermsari Syrianei: IU

Mpuero ceofiieHie:

KoTponep D Ha nuEmMal
KorrTponep E Ha nuEmal

KomaHia 38 usnpaaHe: .
| Sapesxaans Ha palin —

| Teryw pen; I

Fig. 5 The information system

Hzwoa

6. CONCLUSION

The developed environment for adjustment and diagnostics of SPV industrial
controllers can provide a full control over the SPV slave controllers. It is compatible
with all Windows operating system after Windows 95. By using the environment for
adjustments and diagnostics, full or particular changes of the controller’s applied
program and parameters can be done.

7. REFERENCES

[1] Mollov, S., G. Mihov, R. Ivanov, S. Jilov,. Diagnostics Functions Embedding Industrial
Control System. Composing of Different Local Area Networks for Industrial Controllers on
Common Physical Layer. XXXIX International Scientific Conference on Information,
Communication and Energy Systems and Technologies ICEST °2004. June 16- 19, 2004, Bitola,
Macedonia.

[2] Dimitrov, E., G. Mihov, I. Tashev, M. Mitev, Local array network for industrial controller,
Proceedings of the Int. Scientific Conference ENERGY AND INFORMATION SYSTEM AND
TEHNOLOGIES, . vol. 3 pp. 608-613, June 7- 8, 2001, Bitola, Macedonia.

[3] www.msdn.microsoft.com

[4] www.codeproject.com

The paper has been reviewed by Associate Professor Ph.D. Emil Dimitrov from
department of Electronics, Technical University — Sofia.

