
ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

DEVELOPED ENVIRONMENT FOR ADJUSTMENT AND
DIAGNOSTICS OF SPV INDUSTRIAL CONTROLLERS

 Stanimir Damyanov Mollov

Faculty of Electronic Engineering and Technologies, TU – Sofia, 1797, Sofia, Bulgaria,

E-mail: smollov@abv.bg

Keywords: adjustment, diagnostics, debugger, controller
The paper presents a developed environment for adjustment and diagnostics of SPV

industrial controllers. The developed environment is a part of the software for personal
computer. It provides all operations related with loading, adjustment and diagnostics of the
controller’s software and may communicate both control and debugger programs embedded
in each of SPV industrial controllers. To accomplishing the communication between a
personal computer and controllers is used a hardware-software network driver, which
realizes all function related with receiving and transmitting the messages via industrial
network. The developer environment is compatible with all Windows operating system. It is
realized on high level program language Visual C++.

1. INTRODUCTION
Nowadays, the tendency in automated systems is to be based on personal

computer as applied so-called centralized management (fig.1). This management is
characterized with a request sending from the master station to the some slave station.
By this way, the task of slave module is to identify the request from the master station
and to replay at a fixed time interval. The master station, considering the specified
necessity, defines the order of requests.

Fig. 1 Centralized menagement

Usually the main station consists of a personal computer, which is used as for
acumodating and processing the information, as well as assistance instrument for
adjustment and diagnostics of the slave modules. In the present paper the developed

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

environment for adjustment and diagnostics of SPV industrial controllers have been
discussed. The developed enviroment is compatible with all Windows operating
system and it is realized on high level language Visual C++.

2. DIAGNOSTIC FUNCTIONS EMBEDED IN SPV CONTROLLERS
The main idea, developed in the building of an industrial network with SPV-

controllers, is that all operations, related with control, adjustment and diagnostics, to
be performed in the same network [1]. For this purpose the software of the controllers
must include: control (user) program and a program for adjustment and diagnostics –
debugger. The control program and debugger must work. To perform this condition,
it is necessary the debugger to be provided with own network driver and to does not
use the network driver of the control program.

Including diagnostic functions in the network requires keeping exact rules. These
rules determine the conception: each correspondent in network has to have an own
name. The main station has the name ‘A’. The control information part of the
information system is organized between controllers used capital letters from D to Y
as a name. The controller, which enters into diagnostic functions, is identified as a
controller with name ‘C’. Such controller cannot perform control and information
functions at the same time.

Fig. 2 Conception for correspondents naming

The developed environment for adjustment and diagnostics as a part of the

software for the personal computer should communicate both control program and
debugger embedded in each one of SPV controllers. To accomplish the
communication between master station and slave stations in the industrial network is
used a hardware/software network driver (fig.2). The network driver realizes all
functions of receiving and sending of the messages, protecting times, repeating of the
message when an error occurs and solving the conflict situation in the industrial
network. By this way the hardware/software network driver in fact is the master
station in the industrial network.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

3. DEVELOPED ENVIRONMENT FOR ADJUSTMENT AND DIAGNOSTICS
The developed environment for adjustment and diagnostics realizes two kinds of

operations. On one hand these are the operations of loading, adjustment and
diagnostics of the applied program. On the other hand these are the operations for
processing of the parameters of the control program. The place of the developed
system into the composition of control informational system is shown on fig. 3.

Fig. 3 Developed environment and its two processes

Developed environment for adjustment and diagnostics is realized as used so

called multi-thread method. This method allows several processes to work at the
same time under management of the computer operating system. In this case are used
only two simultaneous worked processes. The first one (main process) services the
communication with operator. The second one is managed from main process and
services the serial communication interface. This imposes existence of a
communication channel between these two processes. In the present work the
communication channel is consist of flags and messages.

4. FUNCTIONS FOR SERIAL COMMUNICATION SERVICE
The developed enviroment is realized on high level language Visual C++ and

used the standart API function for serial communication. These functions are two
kinds:

- The functions for serial port configuration;
- The functions for communication via serial port.
4.1 Functions for serial port configuration
Creating a port handle

The serial port's handle is a handle that can be used to access the object of serial
port. The function that is used to create the serial port handle is the CreateFile
function. The following code shows the function that is used to create a handle:

hComm = CreateFile("COM1", // Specify port device: default "COM1"
GENERIC_READ | GENERIC_WRITE, // Specify mode that open device.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

0, // the devide isn't shared.
NULL, // the object gets a default security
OPEN_EXISTING, // Specify which action to take on file.
0, // default.
NULL); // default.

Restoring a configuration
The restoration of serial port configuration is getting current configuration at

control device. The configuration of serial port includes parameters that are used for
setting a serial communications device. The GetCommState function is used to get
the current device-control and then fills to a device-control block (a DBC structure)
with the current control settings for a specified communications device:

GetCommState(hComm,&m_dcb)
Modifying a configuration

m_dcb.BaudRate = CBR_9600; // Specify the baud rate
m_dcb.ByteSize = 8; //Specify the number of bits for byte
m_dcb.Parity = NOPARITY; //Specify parity
m_dcb.StopBits = ONESTOPBIT; //Specify stop bits

Storing a configuration
The next step is the storage of the new configuration that is modified already into

device control. To store is used SetCommState API function. This function
configures a communications device according to the specifications in a DBC
structure. The function reinitializes all hardware and control settings.

SetCommState(hComm,&m_dcb)
Setting a Time-Out communication
The final step in serial port opening is setting communication Time-out by using

the COMMTIMEOUTS data-structure and calling SetCommTimeouts function.
m_ComOuts.ReadIntervalTimeout = 20; //Specify time-out between charactor for receiving.
m_ComOuts.ReadTotalTimeoutMultiplier = 10; //Specify value that is multiplied by the requested
number of bytes to be read
m_ComOuts.ReadTotalTimeoutConstant = 10;//Specify value is added to the product of
theReadTotalTimeoutMultiplier member
m_ComOuts.WriteTotalTimeoutMultiplier = 10; // Specify value that is multiplied by the requested
number of bytes to be sent.
m_ComOuts.WriteTotalTimeoutConstant = 10; //Specify value is added to the product of the
WriteTotalTimeoutMultiplier member
SetCommTimeouts(hComm,&m_ComOuts) // Set the time-out parameter into device control

4.2 Functions for communication via serial port
Sending data
The WriteFile function is a function used to send data in serial port

communication.
WriteFile(hComm, // handle to file to write to

outputData, // pointer to data to write to file
sizeBuffer, // number of bytes to write
&length, NULL) // pointer to number of bytes written

Receiving data
The ReadFile function is the function that handles reading data via serial port.
ReadFile(hComm, // handle of file to read

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

inputData, // handle of file to read
sizeBuffer, // number of bytes to read
&length, // pointer to number of bytes read
NULL) // pointer to structure for data

5. DEMONSTRATION PROGRAM FOR WORK WITH SPV
CONTROLLERS

The demonstration program provides full control over SPV industrial controllers,
which include:

- Loading, adjustment and diagnostics of the software of the controllers;
- Management the work of the controllers (start and stop);
- Change the parameters and the name (address) of the controllers;
- Cyclical inquiry and displaying the data from all controllers in the network (so

called an information system).
The result of the demonstration program work is shown on fig.4. In this case, the

slave controller works in the debugger mode. The command, which may be executed
in this mode are:

- loading the user program from a file;
- writing the user program or a memory area into file;
- reading and displaying the memory area;
- memory modification;
- make a copy of the memory area.

Fig. 4 Slave station into debugger mode

The commands are written in the bottom edit box. After pressing the ENTER key

each command is included in the packet structure of the previously defined protocol
[2]. After this the message is sending via serial port. The received answer is displayed

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

in upper edit box. It is consist of only usefully part without service part of the
received message

The result of the work of the demonstration program as an information system is
shown on fig.5. In this mode the main station in the network cyclical inquiring and
displaying the data from the all controllers in the network.

Fig. 5 The information system

6. CONCLUSION
The developed environment for adjustment and diagnostics of SPV industrial

controllers can provide a full control over the SPV slave controllers. It is compatible
with all Windows operating system after Windows 95. By using the environment for
adjustments and diagnostics, full or particular changes of the controller’s applied
program and parameters can be done.

7. REFERENCES
[1] Mollov, S., G. Mihov, R. Ivanov, S. Jilov,. Diagnostics Functions Embedding Industrial

Control System. Composing of Different Local Area Networks for Industrial Controllers on
Common Physical Layer. XXXIX International Scientific Conference on Information,
Communication and Energy Systems and Technologies ICEST ‘2004. June 16- 19, 2004, Bitola,
Macedonia.

[2] Dimitrov, E., G. Mihov, I. Tashev, M. Mitev, Local array network for industrial controller,
Proceedings of the Int. Scientific Conference ENERGY AND INFORMATION SYSTEM AND
TEHNOLOGIES, . vol. 3 pp. 608-613, June 7- 8, 2001, Bitola, Macedonia.

[3] www.msdn.microsoft.com
[4] www.codeproject.com

The paper has been reviewed by Associate Professor Ph.D. Emil Dimitrov from

department of Electronics, Technical University – Sofia.

