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An optimization problem for designing of a non-uniformly spaced, linear phase FIR filter 
with coefficients consisting of minimum number of signed-power-of-two terms is formulated. 
The aim of this paper is first to reduce the region that contains the optimal solution in order 
to decrease the computation time and, then FIR filters are designed using mixed integer linear 
programming (MILP). In this paper we minimize the number of signed-power-of-two-terms 
per coefficients for defined range of stopband ripple and fixed passband ripple, subject to 
filter specification, filter order and number of coefficient bits. We optimize both coefficients 
representation and stopband ripple. In our method all possible coefficient values for given 
stopband ripple are calculated and compared and thus the one containing a minimum number 
of terms is selected. It is shown that our optimization procedure compares very favorably with 
other known methods. 

1. INTRODUCTION 
Recently, numerous algorithms have been proposed for designing multiplierless 

finite impulse response (FIR) filters. In multiplierless digital filters multiplications 
are replaced with a sequence of shifts and adds (or subtracts). Therefore only adders 
(or subtracts) are required for the coefficient implementation. This leads to significant 
reduction in the computational complexity and power consumption. 

In order to find an optimum digital filter implementation satisfying all the design 
criteria in some cases optimization methods can be used. FIR filters with discrete 
coefficient values are designed using the methods of integer programming. When the 
coefficients are represented by signed-power-of-two (SPT) terms the most used 
method is mixed integer linear programming (MILP). Different objective functions 
are being considered in existing literature. MILP has been used earlier in [1]-[3] 
where the objective function was to minimize the ripple subject to filter specification. 
In [4] and [5] the aim was to minimize the number of SPT terms. This leads to 
reduction of hardware cost. An optimization problem for designing linear phase FIR 
filter with minimal complexity was formulated and solved by MILP in [6]. Another 
approach for design of linear phase FIR filters with minimum number of adders 
required to meet the specifications was proposed in [7]. 

In this paper we minimize the number of SPT terms for defined range of stopband 
(SB) ripple and fixed passband (PB) ripple, subject to filter specification, filter order 
and number of coefficient bits. First we reduce the region that contains the optimal 
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solution in order to decrease the execution time, as proposed in [8]. In our method we 
optimize coefficient representation for fixed PB ripple and search an optimal 
solution, using different values for the SB ripple. We have written a simple program, 
realizing the proposed algorithm. The main advantages of our method compared with 
other existing algorithms are its simplicity and reduction of the execution time. 

2. BASIC THEORY 

2.1 Linear phase FIR filters 
The filter specifications must fit in given limits. The amplitude response of the 

desired filter should range in [ ]11 pp δ−δ+  for the PB and in [ ]ss δ−δ  for the SB, where 
 and  are ripples in the PB and SB respectively. pδ sδ

Specifications for a lowpass (LP) filter are thus formulated as: 
 ],[,)(H];0[,1)(H1 sssppp πω∈ωδ≤ω≤δ−ω∈ωδ+≤ω≤δ−  (1) 

where ω  and  are the PB and SB frequencies respectively. p sω

The transfer function of FIR filter of length N+1 is given by 

 . (2) ∑
=
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This filter has linear phase if its impulse response h(n) is either symmetric, i.e., 
 ,Nn0),nN(h)n(h ≤≤−=  (3) 

or is antisymmetric, i.e., 
 Nn0),nN(h)n(h ≤≤−−=  (4) 

and thus four types of symmetry for the impulse response are possible. The 
magnitude response for the first type, for example, is 

 ∑
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2.2 Multiplierless realizations 
The basic operations in digital signal processing are addition, multiplication and 

delay. In VLSI implementations, a multiplier element is very costly. Therefore, it is 
very attractive to replace the multiplication of a data sample by each filter coefficient 
value with a series of adder and/or subtractors and shifters. The shifts are often hard-
wired hence only adders are required for the coefficient implementation. This kind of 
multiplier representation is very effective in terms of area, power and delay compared 
with general multipliers. In this paper we focus on designing filters such that all the 
coefficients are representable using several power-of-two terms. In this case canonic 
signed digit (CSD) representation is the most proper. 

2.3 CSD principles 
CSD number representation is the unique representation of a given number as a 

sum of powers of two. Multiplication to a CSD number is very cheap since it is a sum 
of shifted versions of the multiplicand. 

For a given M-bit representation of a number , CSD ]22[h 1M1M
m

−−−∈
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representation is given by: 

 , (6) ∑
=
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where s . CSD representation is the signed digit representation in which { 1,0,1k −∈ }
 1M1kfor0ss 1kk −==− K . (7) 
Among all signed digit representations, the CSD representation has the minimum 
number of nonzero digits. 

In our algorithm we use linear programming and the objective function has to be 
linear. In this case power-of-two terms representation in (6) must transform to: 

 , (8) ∑
=

−−+ −=
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where  and . In this way we have linear constraints on number of 
nonzero digits.  

}1,0{a k,m ∈+ }1,0{a k,m ∈−

3. NEW METHOD OUTLINE 
The desired linear phase FIR filter can be conveniently determined using a few 

steps procedure. First step involves determining initial closed space including the 
feasible space, where the filter meets the given criteria. To find this space we use the 
following constraints: 

1. Discrete space constraints. 
2. CSD code constraints. 
3. Filter specification constraints. 
The second step involves finding the filter coefficients with the minimum SPT 

terms using MILP. The objective function in the proposed algorithm compared with 
other existing algorithms minimizes the number of SPT terms for fixed PB ripple and 
various SB ripple values. In this way the optimization of both, the number of SPT 
terms and SB ripple value, leads to an optimal filter which exactly meet the initial 
conditions. The received filter is compared with Remez one. In addition, our 
algorithm is much faster than the conventional one used in [9]. 

4. LIMITATIONS INVESTIGATION 
The aim of the first part of the proposed algorithm is to find initial closed space 

subject to some constraints. In discrete space filter coefficients can take only discrete 
values within a specified range [-1 1]. The quantization step depends on available 
wordlength representing numbers being used. For M-bit CSDC number 
representation the maximal possible value is: 

 . (9) 
 

∑
−

=
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If we would use 7 bit number representation, the limitation (9) will produce 
discrete space filter coefficients within the range [-0.65625 0.65625]. In order to 
narrow further the searched space we introduce uniformly distributed grids of 
frequencies in PB and SB. The bigger the number of selected frequencies is the 
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smaller the searched space. On the other hand, extremely big amount of frequency 
points leads to increased time of computations for optimal solution. In our approach 
we have chosen the frequency step one time smaller than cutoff frequencies. This 
step is a compromise between computational time and size of the searched space. The 
selected grid leads to strong reduction of the space that contains the optimal solution 
as shown in Fig. 1. The magnitude response of the desired linear phase FIR filter for 
given frequency points has to meet the filter requirements (1). In order to illustrate 
the graphical coefficients representation we consider the following example:  

Example: 5 bits wordlength, linear phase FIR filter of order N=3, 3.0sp =δ=δ  
and cutoff frequencies , s/rad2.02p π=ω s/rad337.02s π=ω .  

This simplification allows representation of the searched space in two dimensions. 

  
Fig. 1. Localization of the initial space 
containing optimal solution. 

Fig. 2. All possible solutions obtained with 
proposed algorithm ‘•’ and optimal solution ‘x’ 

In second part of our algorithm we find the optimal solution using MILP. We 
concentrate on optimization of linear phase FIR filter with odd length symmetric 
impulse response. Starting from (5) and utilizing (1), (6) and (8) we can formulate the 
following optimization problem: 

minimize   ∑ ∑
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The solution of this optimization problem yields coefficients set that is minimal in 
terms of SPT terms. As a result of the optimization some solutions with equal 
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minimal number of SPT terms can be obtained (Fig. 2). In this case the optimal result 
is chosen in terms of SB ripple.  

5. EXPERIMENTS 

A linear phase LP FIR filter with s/rad2.02p π=ω  and  is 
considered. The filter order is N=6 with symmetric impulse response, PB ripple is 

 and coefficient wordlength is M=7 bits. The filter was optimized in terms of 
the number of SPT terms and SB ripple. We consider two cases:  

s/rad337.02s π=ω

1.0p =δ

1. Maximum ripple is 1.0sp =δ=δ  in both the SB and PB. The obtained 
multiplierless linear phase FIR filter with 7 SPT terms for the 4 coefficients is 
compared with Remez one as shown in Fig. 3. 

2. SB and PB ripple are different. In this case all possible coefficient values for 
given stopband ripple range [0.08 0.2] are calculated and compared and the one 
containing a minimum number of SPT terms is selected. As a result of the 
optimization three possible solutions with 6 SPT terms for the 4 coefficients (Fig. 4) 
and  are obtained. Dashed line (Fig. 4) shows the magnitude 
response for optimal multiplierless linear phase FIR filter that meet exactly the filter 
specification. The received filters are compared with Remez one (solid line). 

16.01.0 sp =δ=δ

The magnitude responses of the filters designed using various algorithms are 
shown in Fig. 5. The filter obtained with [9] has the same number of SPT terms for 
filter coefficients as ones obtained with our algorithm (case 2). This example shows 
that in our algorithm the execution time is reduced significantly (Table 1.). 

Table 1. 
Method sp δδ ,  Number of SPT terms 

for filter coefficients 
Execution time 

Proposed method 16.01.0 == sp δδ  6 27.937 s 
Matlog Toolbox [9] 16.01.0 == sp δδ  6 69.047 s  

 

  
Fig. 3. Magnitude responses for the optimized 
multiplierless filters using proposed algorithm 
and Remez approach. 

Fig. 4. Magnitude responses for our design (3 
different curves) and Remez based filter. 
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Fig. 5. Magnitude response for the optimized 
multiplierless filters using proposed algorithm, 
Matlog Toolbox algorithm and Remez algorithm.

6. CONCLUSION 
In this paper an efficient MILP algorithm for design of linear phase multiplierless 

FIR filters was developed. It is minimizing simultaneously both the number of SPT 
terms for filter coefficients and the SB ripple, while in many other publications the 
aim of optimization is minimization only of the number of SPT terms. The filter 
designed using our method meets more precisely the filter specifications while taking 
shorter execution time. The proposed algorithm compares very favorably with the 
other existing methods concerning its simplicity and it is easy to be used. The 
efficiency of the method and its advantages over the other methods are verified 
experimentally. 
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