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In this paper a time domain recursive digital filter model, based on recurrent neural 

network is proposed. This problem can be considered as a training procedure of two layer 
recurrent neural network. The proposed neural network training algorithm is based on 
determination of the sensitivity coefficients of the recurrent system. The dynamic model of 
two layer recurrent neural network described by system of recurrent equations is considered. 
Time domain modeling approach has been applied to design the Nyquist recursive digital 
filter. Digital filter parameters are obtained by optimization procedure when the 
requirements to the impulse response in time domain are given. 

Modern devices for digital signal processing in particular digital filters 
represent dynamical systems described with the difference equations. This fact allows 
the application of neural networks for defining the design problem in time domain, 
for modeling and realization of the non-recursive (finite impulse response – FIR), 
recursive (infinite impulse response – IIR) and adaptive digital filters (DF). One 
approach for the 1-D FIR digital filter design based on the weighted mean square 
method and neural network to state the approximation problem is proposed in [1]. 
Some methods for the non-linear digital filters design using neural networks are 
considered in [2]. Basic results related to the discrete dynamical systems 
approximation using neural networks are discussed in [3]. 

In this paper a 1-D IIR digital filter neural network model is proposed. Training 
sequences of input excitations and corresponding filter responses are generated for 
the training procedure of this model with given neural network structure. The digital 
filter model has been trained in such a way that with given predetermined input 
signal, the output variable approximates the target function in mean square sense. 
Time domain modeling approach has been applied to design the Nyquist recursive 
digital filter. Digital filter parameters are obtained by optimization procedure when 
the requirements to the impulse response in time domain are given. 

1. RECURSIVE DIGITAL FILTER MODELING BASED ON NEURAL  
 NETWORK 

The neural network structure used for the recursive digital filter modeling is 
shown in Figure 1. 

The recursive or IIR digital filter can be considered as a digital dynamic system 
described in time domain with n – order difference equation that has been stated 
using the delayed samples of the excitation input signal and the response signal at the 
output: 
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where  are the IIR digital filter coefficients,  - are the 
excitation input signal, respectively the response signal at the filter output. 
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Figure 1. Recurrent neural network structure for digital filter modeling 

Transforming the difference equation (1), the state space description of the 
recursive digital filter can be obtained as a system of  n - number first order equations 
in the form: 
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where  nRx∈  is a state space vector,  and mRy ∈ unRu ∈  are the dynamic system 
vectors of the output signals, respectively of the input signals and 

unn ×∈RW ,  and  nm×∈ RC   are matrixes of the system coefficients; 
n - a number of neurons at the first layer 

un - a number of input excitation signals 
;nnn uz += )c,...,c,c(diag m2`1=C  
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The equations (3), (4) can be used to describe the recurrent neural network shown 
in Figure 1. 

The following additional vectors are defined: 
• a vector of the neural network weighting coefficients 

[ ]m21nnn22221n11211 c...c,c,w....w...ww,w...wwp
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where the elements of matrix unn ×∈RW are introduced row by row; 
• a vector of the first layer inputs of neural network 
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• a vector of the neural network outputs 
;)]k(y)...k(y),k(y[)k( T
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Mean square error objective function is defined in following form: 
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where  is a number of samples and {  is a target function (the set of 
experimental data). 
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Using the results published in [3] the recursive digital filter can be modeling by 
the one layer recurrent neural network (see Figure 1) with number of neurons 
corresponding to the digital filter transfer function order. The training procedure of 
the digital filter model is realized applying the algorithm of the Lagrange multipliers. 

2. ALGORITHM OF LAGRANGE MULTIPLIERS 
The algorithm of the Lagrange multipliers is used as a training procedure of the 

digital filter neural network model. The main problem in the neural network training 
process is the gradient calculation of the mean square objective function (8) with 
respect to weights w. 

The vector of Lagrange multipliers is defined as: 
T

n21 )]k(),...,k(),k([)k( λλλ=λ   

and the Hamiltonian of the optimization problem (3),(4), (8) is stated in the form: 
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Using (9) the conjugated system is composed as follows: 
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The objective function (8) gradient is calculated using the following algorithm: 
Step 1. Calculate and store the set of values{  from (3) )}k(x

 for 1k,...,1k,kk;)k( f0000 −+== xx  
Step 2. Solve the conjugate system (10) и (11) 

 for k  (backwards in time) 0f k,...,1k −=
Step 3. Obtain the objective function gradient from the solution of (11) for k=0 

)k((J 0Γp) =∇  
The objective function (8) is minimized applying the standard optimization 

procedure. 
The conjugated system (10), (11) can be written in matrix form. For this purpose 

it is necessary to define the following sub-matrix of weighting coefficients matrix W: 
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The error vector from the objective function (8) can be written as: 
m,...,2,1i,ŷye],e,...,e,e[ iiim21 =−==e           (13) 

Equation (10) is stated in matrix form as follows: 
)1k()k()k( T

x ++= λWCeλ              (14) 
where C is the matrix from (4) ,  is the matrix from (12) and  e is an error vector.  xW

Equation (11) can be stated in the following form: 
• for the first layer of the neural network 
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• for the second layer of the neural network 
)k())k(x),...,k(x),k(x(diag)1k()k( m21

c
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c
1,col eΓΓ ++=            (16) 
Matrix form statement of the conjugated system (10), (11) allows effective 

realization of the algorithm for the objective function (8) gradient determination with 
respect to neural network weights. 

After gradient determination the standard optimization procedure is used for 
minimization of the objective function (8). 

3. MODELING RESULTS 
The effectiveness of the proposed algorithm is demonstrated by modeling of 

Nyquist recursive digital filter. Nyquist filters play an important role in digital data 
transmission for its intersymbol interferece (ISI)-free property. Also they can be 
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adopted in decimation or interpolation multirate systems. To achieve zero ISI, 
Nyquist filters must satisfy some criteria in time domain that they should have zeros 
equally spaced in the impulse response coefficients except one specified. Infinite 
impulse response (IIR) Nyquist filters have lower orders than FIR filters, but their 
impulse responses are more difficult to keep the zero-crossing time constraint 
property ant the problem of filter stability should also be examined [4]. 

Impulse response  of the (IIR) Nyquist filter with the time domain 
constraints is defined in the form [4]: 
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where  are integers, all the filter coefficients are real, ,   is the 
multiple of N. 

dn N,N ii b,a 1a0 = dN

The impulse response of the IIR Nyquist filter is used as target function in the 
training procedure of the neural network model. The IIR Nyquist filter with 

, 4N,15N dn == 9K,4N ==  is considered. The impulse response coefficients of 
the IIR Nyquist filter are given in Table 1 [4]. 

 

Table 1. The impulse response coefficients of the IIR Nyquist filter 

0b  0,003737 11b  0,252947 

1b  0 12b  0,197365 

2b  -0,011246 13b  0,134028 

3b  -0,021744 14b  0,068797 

4b  -0,021263 15b  0,027277 

5b  0 0a  1,0 

6b  0,0466062 1a  0 

7b  0,1162339 2a  0 

8b  0,1904965 3a  0 

9b  0,25 4a  0,536111 

10b  0,2710056   
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Fig 2a. Impulse responses  of  Fig. 2b. Impulse response of the  
            the target IIR filter       neural network model 

 

   
Fig 3a. Magnitude responses  of  Fig. 3b. Magnitude response of 

        the target IIR filter       the neural network model 
The impulse responses of the target IIR Nyquist filter and the neural network 

model with 6 neurons are shown in Fig. 2a and Fig.2b respectively. The magnitude 
responses in frequency domain of the Nyquist filter and the neural network model 
with 6 neurons are shown in Fig. 3a, Fig. 3b respectively. 
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