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OPTIMUM NUMBER OF CHECKS IN DIAGNOSTICS 
ELEMENTS OF FIXED SYSTEM 
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We consider the checking problem under the case that if system failure is detected by 
checking, then the problem ends. By the methods of calculus of variations, we find the 
optimum number of checks which minimizes the expected loss up to detection of the first 
failure subject to the condition that the expected cost of checking is restricted. Applying the 
obtained results to the Gamma distribution with a shape parameter 2, we show the curve of 
the optimum number of checks graphically. 

INTRODUCTION 
Many different checking problems of a one-unit system have been treated in the 

literature. Especially, Barlow and Proschan [1] and Tassev [3] proposed a typical 
inspection policy and discussed the optimum checking procedures. In such a 
checking problem as they formulated, it is supposed that: 

1. system failure is detected only by checking with probably one, 
2. checking does not degrade the system, 
3. the system cannot fail while being checked and 
4. each checked incurs a constant cost and the time elapsed between system 

failure and its discovery at the next checking results in a constant cost per 
unit of time. 

However, the results derived by them become complicated when there are many 
checks. To treat this case Keller [2] discussed the optimum checking schedules 
supposing that checking is so frequent that it can be described by a continuous 
density  of checks per unit of time. By the methods of calculus of variations, he 
found the optimum 

( )tn
( )tn  minimizing the expected cost of checking and the expected 

loss up to detection of the first failure. 
In this paper we assume that each checking is made instantaneously and if system 

failure is detected by checking, then the problem ends: There no replacements. That 
is, we consider the model, which has the same assumptions as those of inspection 
policy in Zelen [3] and Tassev [5]. According to Keller’s discussion we find the 
optimum number of checks which minimizes the expected loss up to detection of the 
first failure subject to the condition that the expected cost of checking is restricted. It 
follows that our model is more practical than of Keller. 
 

FORMULATIONS AND ANALYSIS 
Introduce a smooth density , which denotes the number of checks per unit of 

time. Let  be the failure time distribution of the system (or the unit). Then, 
( )tn

( )tF
( ) ( )tfdttdF =  is the probability of failure per unit of time. The time between two 
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successive checkings in ( )tn

( )dttf

1  and the total number of checks up to time t is  

If we suppose that a cost C1 is suffered for each checking and the loss due to elapsed 
time between failure and its detection incurs a constant cost C2 per unit of time, then 
the total expected cost of checking is 

∫
t

dssn
0

)( .

( )t

( )( )tnJ

( )( ) dssnCtnK
tx

∫∫=
00

1 )( ,      (1) 

and the expected loss up to detection of the first failure is 
( )( ) ( ){ } ( )dttftntnJ 2= .       (2) 

In particular, we assume that there is a constraint on the allowable investment of 
the total expected cost of checking. That has the specific form 

( )( ) ( ) AdttfdssnCtnK
tx

=∫∫=
00

1 )( ,      (3) 

where A is a constant. From the above discussion, we seek the function n , 
which minimizes (2) subject to (3): 

( )( ) ( ) ( )[ ] min
0

2 =∫= dttftnCtnJ
x

 

subject to 

( )( ) ( ) AdttfdssnCtnK
tx

=∫∫=
00

1 )( . 

Using the Lagrange multiplier , the Euler – Lagrange differential equation 
corresponding to this conditional problem of variation can be written easily by 

treating  as the unknown function and 

γ

∫
t

dssn
0

)( ( )tn  as its derivative. Then, the Euler – 

Lagrange differential equation becomes 
( )[ ] ( ){ }tftnCdtd 2

2/ .        (4) 
Integrating (4) with respect to t, we obtain 

( ) ( )[ ]{ } ( )tfCtFaCtn 22
21 −γ= ,      (5) 

where  is integration constant. The result for a ( )tn , for which (5) can be solved in 
terms of the right-hand side, depends on the constant a . It follows from (5) that if 

 then  since C , , 0≤γ 0≤a 01 > 02 >C ( ) 0>tf , and ( ) 1=∞F . (5) yields  
( ) ( ) ( )[ ]{ } 21

2 tFatfCtn −γ= .      (6) 
Inserting the solution  of (6) into (2) in order to determine , we obtained  ( )tn a

( )( ) ( )( ) ( )[ ]{ } dttfatfCCtnJ
x 21

0

21
21 −γ∫= .     (7) 

From (7), if 0≥γ  then  is minimized when ( )( tnJ ) 1=a  and if 0≤γ  then  
is minimized when 0a = . We can determine γ  for specified a  from (3) and (6). Since 

 obtained for a  cannot satisfy the assumption  is sufficiently great ( )tn 0= ∫
∞

0
(n )s ds
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value,  obtained for  is optimal for the failure rate function ( )tn 1=a ( )tr  
corresponding to  is IFR (Increasing Failure Rate), where ( )tF

( )tF−f=

( )[ ] ( ){ }= A sr 1

( )tn )

( )0 dss

( )

)

( )−

∫

+

∞

2

0
2

C

C

t

( ) ( ) [ ]ttr 1  
(see, Barlow and Proschan [1,pp.22-35]). Thus, as the optimum n  we obtain ( )t
( ) ( ) .    (8) ( )








∫ ∫
∞

dttfdstrCtn
t

0 0

221
1

Actually, we verify that  satisfying (8) minimizes ( )( )tnJ . Let ( ) (tnt 0+
( )tn

n  be 
any admissible function in the extremum problem, which is not equal to . From 
(3), we have 

( )∫ ∫ =
∞

0 0
0

t
dttfn .        (9) 
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Fig.1 Variation of the smooth density n of the number of checks in the connection of 

time t and the function of distribution of time for system refusing F(t) 
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where 

( ) ( ){ } ( )∫ ∫=
∞

0 0

21
1

t
dttfdssrCAp . 

In the above inequality, we used the relation that  

( ) ( )
( )




>−>
==

+
01

01
11

xforx
xfor

x    . 

Hence n(t) satisfying (8) minimizes ( )( )tnJ  and is the functional that we seek to 
find. Finally we obtain the following theorem on the optimum number of checks: 

Theorem. If r(t) is IFR, then there exists the optimum number n(t) of checks 
which minimizes the expected loss ( )( )tnJ  subject to the expected cost ( )( ) AtnK = , 
and which is given by 

( ) ( ){ } ( ){ } ( )∫ ∫=
∞

0 0

2121
1 /

t
dttfdstrtrCAtn . 

 
Example 
Let us apply the obtained results to the Gamma distribution with a shape 

parameter 2, ( ) ( ) ( ) 0,exp11 >λλ−λ+−= tttF . 
From (8), since 
( ) ( )tttr λ+λ= 12 , 

we obtain the density of checks 
( ) ( )[ ] 211 ttkkn λ+= ,        (10) 

where k is a positive constant and 

( )( ) ( ) ( )( ) ( )∫ λ−λ−λ+λ−=
∞

−

0

212123
1 exp1log21 dtttttCAk .  (11) 

Since  and ( ) 00 =n ( ) 21α=∞ kn  and for any 0>t , ( ) 0>dttdn  and 
( ) 0<22 dttnd . 
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