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Abstract – The accuracy and range of tuning, the sensitivities and the overall performance of 

variable IIR filters, designed as a cascade of several identical sub-filters, have been studied in this 
work and compared with these of the corresponding classically designed variable filters. It was 
firmly shown that, at the price of a slight increase of the filter order, the cascaded sub-filter reali-
zations are achieving much better performance. All results are verified experimentally. 

1. INTRODUCTION 
Variable IIR filters are often used in telecommunication and electronic equipment 

and all the known methods of their design are critically studied in Ref. [1], [2]. The 
most popular design procedure is based on the spectral (allpass) transformations of 
Constantinides (TC) [1], [2], but when the prototypes are IIR filters, delay-free loops 
appear after the TC. Due to the attempts to eliminate these delay-free loops, no pre-
cise, without limitations, real-time tuning of IIR filters is known until now – all me-
thods are approximate and valid only in a narrow range of values of the tuned para-
meter and over some limited frequency range. Most methods are based on truncated 
Taylor series expansions, applied on parallel-allpass-structure [3] (called MNR-me-
thod after the names of the authors Mitra, Neuvo and Roivainen). This method is con-
sidered as the best known, but we have shown in Ref. [4] that the magnitude charac-
teristics are degrading even when the LP/HP (lowpass/ highpass) filter cutoff fre-
quency or the bandpass and bandstop (BP/BS) bandwidth (BW) are tuned over a very 
limited frequency range. We have proposed a new approach [5], [6], based on a cas-
caded connection of several identical sub-filters. It permits an easy tuning of the 
cutoff frequency of the LP filter without having to use TC and truncated Taylor series 
expansions when using sub-filters of first or second order. We have developed [7], 
[8] several new tunable sub-filter structures (of first and second order) very suitable 
for narrow-band realizations. In Ref. [2], [9] we have advanced the idea to realize the 
sub-filters of higher than second order as parallel allpass structures but to take special 
measures to reduce their stop-band (SB) sensitivity. 

The main aim of the present work is to investigate the tuning accuracy of the 
variable filters obtained according to our method (as cascades of identical sub-filters) 
and to compare their performance with that of the MNR realizations.  
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2. DESIGN OF VARIABLE FILTERS AS A CASCADE OF IDENTICAL 
SUB-FILTERS 

The main concept in our approach to design variable digital filters (VDF) is to use 
several cascaded identical filter blocks, each of them providing a very simple tuning 
of a given frequency parameter by varying a single multiplier coefficient. As the sub-
filters are identical, only one multiplier coefficient value per given parameter for the 
entire filter has to be recalculated in the process of tuning. 

The magnitude specifications of the desired LP filter are: pass-band (PB) from 0 
to Ωp, stop-band (SB) from ΩSB to Ωs/2, maximal PB attenuation Ap,dB and minimal 
SB attenuation As,dB. And we have to find a total transfer function (TF) H(z) repre-
sented as a product of N equal individual TFs Hi(z), each of them of order n: 
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These TFs might be of Butterworth, Chebyshev or elliptic type and in the process 
of design we have to determine the minimal number N of the individual TFs Hi(z) ne-
cessary to meet the specifications with given (selected) type (maximally flat, equirip-
ple or other) and order n. A step-by-step design procedure for this is given in [5], [6]. 
An approximation using N equal terms is far from optimal and there are many limita-
tions. It might be even impossible to meet some difficult filter specifications no mat-
ter how high the number N is taken. These limitations are investigated in [5], [6], [9]. 

We have developed [7], [8] several excellent variable first- (called LS1) (Fig. 1a) 
and second- order (called BQ3) (Fig. 1b) sections for cascade realization with identi-
cal first- (IFOS) and second-order (ISOS) sections with independent tuning without 
using any Taylor series. The elliptic and the LP TFs of BQ3 are: 
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It appeared, however, to be impossible to synthesize such structures with higher 
than second order. No such structures have also been found in the literature. In order 
to solve the problem, we had to accept the MNR approach (Fig. 2) [3] but only for the 
realization of the sub-filters. In Fig. 2b it is shown how a coefficient a1 is turned vari-
able ( )11 ivar Kaa α+≈  by adding a parallel branch, containing a variable coefficient 
α and an additional coefficient Ki properly calculated by using Taylor series expan-
sions [3]. It provides an easy tuning of the cutoff frequency of the LP individual sub-
filters by varying a single multiplier coefficient. But as our structure is a cascade of 
several low-order order sections (even though obtained as parallel-allpass-structures), 
it has much lower SB sensitivity, compared to that of the totally parallel allpass struc-
ture, which is behaving really badly, as shown in [4]. And instead of using the most 
popular in the literature first- (called MH) (Fig. 3a) and second-order (called MH2B) 
(Fig. 4a)  allpass sections, we  have developed some  very-low-sensitivity  (for poles  
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Fig. 1. Very-low-sensitivity (for poles near z=1) first- (LS1)(a) and second-order (BQ3) (b) filter 
sections suitable for cascaded IFOS and ISOS variable filters 
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Fig. 2. Parallel-allpass-structure-based realization (a) and variable coefficient realization (b) 
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Fig. 3. First-order all-pass sections:         Fig. 4. Second-order all-pass sections:   
               (a) MH section, (b) ST section                         (a) MH2B, (b) LS 

near z=1) first- (called ST) (Fig. 3b) and second-order (called LS)(Fig. 4b) allpass 
sections, realizing the following TFs: 
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3. SENSITIVITY INVESTIGATIONS 
If AΘ  and BΘ  are the phase responses of the two branches in Fig. 2a, we can 

derive expressions for the worst-case sensitivity of the magnitudes with respect to the 
changes in all multiplier coefficients mi and mj in the upper and lower branches: 
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where AB Θ−Θ=∆Θ . These sensitivities will be very high in the SB, where high SB 
attenuation is obtained with ∆Θ≈π or kπ for H(ω) and ∆Θ≈0 or 2kπ for G(ω). The 
only way to decrease (4), (5) and thus to improve the accuracy of tuning and of the 
realization is to decrease the phase sensitivities Θ

mS of the allpass circuits. It is even 
better clear for the specific points of the magnitude, like the cutoff frequency and the 
frequencies of the minimal attenuation (for elliptic approximations) in the SB: 
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where 
kAΘ , 

lBΘ are the phase responses of the allpass sections in the two branches 
of Fig. 2a and M depends on As in the specifications (M= 16 for As =30dB, 50 for 40 
dB and 158 for 50 dB). The proper selection of these sections is critically important.  

We have investigated (Fig. 5a) the worst-case sensitivities of two MNR-realiza-
tions of same specifications (Fp=0.01, FSB=0.03, Ap=1dB, ASB=35 dB) – one with 
MH, MH2B and one with our sections (ST and LS – Figs 3b, 4b). It is seen that the 
usage of proper sections is reducing the SB sensitivity more than 60 times. 

Then we have realized a VDF with the same specifications, but using our new ap-
proach (cascaded ISOS in this case), employing our BQ3 section (Fig. 1b) and inves-
tigated the sensitivity. The results shown in Fig. 5b demonstrate a startling reduction 
of more than 300 times, which makes our approach the best possible. 

It is clear that really low SB sensitivities, i.e. very high tuning accuracy, are pos-
sible only if IFOS or ISOS realizations are employed. When high filter selectivity 
(impossible to meet with IFOS or ISOS difficult specifications) is required, we have 
to use third- or fifth-order sub-filters (it is impossible to realize even-order LP sub-
filters with real coefficients and sub-filters of order higher that 5 are impractical, 
because we lose then all the merits of the cascade realization), designed according to 
MNR-approach, but with our very low sensitivity allpass sections of Fig. 3b, 4b. 

It is very difficult (often impossible) to derive general formulae or to obtain 
numerical results about the sensitivities of higher order filters. This is why we have 
employed an indirect approach for a comparative study of the sensitivities of such 
filters. For quite difficult specifications (Fp=0.01, FSB=0.03, Ap=2dB, ASB=55 dB and 
Butterworth approximation) we have obtained 7th order TF and realized it as MNR 
VDF using MH and MH2B (Figs. 3a, 4a) sections. Then a cascaded realization with 
third-order sub-filters was designed for the same specifications, which produced N=3 
or total order 9. The sub-filters were designed using our low-sensitivity allpass 
sections (Figs. 3b, 4b). Both filters have been tuned with factor α=0.033 (Fig.2b) and 



ELECTRONICS’ 2004                                                         22-24 September, Sozopol, BULGARIA 

       
 (a)      (b) 

Fig. 5. WS sensitivities of third-order elliptic filter (Fp=0.01, FSB=0.03, Ap=1dB, ASB=35 dB), 
realized with MH and with Low-sensitivity allpass sections (a); with two BQ3 sections (b) 

then simulated with coefficients quantized to different word-length B (supposing “ca-
nonic sign-digit code”). The results are shown in Fig. 6. The MNR-filter characteris-
tics (Fig. 6a) are destroyed even with B=7bit – the attenuation is changed from But-
terworth type to something like elliptic and is getting some SB minimum of about 15 
dB which is far below the limit of 55 dB. Our filter is behaving perfectly even with 
B=3 (Fig. 6b) and is changing slightly for B=2bit. 

           
(a)                                                                                   (b) 

Fig. 6. Attenuation of a variable Butterworth filter (starting specifications Fp=0.01, FSB=0.03, 
Ap=2dB, ASB=55 dB), realized as 7th order MNR structure (a) and as a cascade of 3 third-
order identical sub-filters (b) for different coefficient word-length and α =0.033 

4. EXPERIMENTS 
The range of tuning of the filters described in Fig. 6 has been studied through 

simulations and the results are shown in Fig. 7. The MNR filter is changing its type 
(from Butterworth to non-polynomial) for every 0.1α > , and for 11.0α >  the SB 
specifications are already violated, while our filter is smoothly tuned from α= -0.3 to 
α=0.3, covering thus very wide frequency range without any magnitude degradation. 

5. CONCLUSIONS 
The accuracy and range of tuning, the sensitivities and the overall performance of 
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(a)                                                                                   (b) 

Fig. 7. Attenuation of a variable Butterworth filter with starting specifications Fp=0.01, 
FSB=0.03, Ap=2dB, ASB=55 dB, realized as 7th order MNR structure (a) and as a 
cascade of 3 third-order identical sub-filters (b) 

variable IIR filters, designed as a cascade of several identical sub-filters, have been 
studied in this work and compared with these of the corresponding MNR-filters. It 
was firmly shown that at the price of a slight increase of the filter order our filters are 
achieving much better performance. These results are verified experimentally. 
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