
ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

ANALYZE OF PROGRAMMING TECHNIQUES FOR
IMPROVEMENT OF JAVA CODE PERFORMANCE

 Ognian Nakov, Dimiter Tenev

Faculty of Computer Systems And Technologies, Technical University-Sofia, “Kliment
Ohridski” 8, Postal Code 1000 Sofia, Bulgaria, phone: +359 02 9653731, e-mail: ditenev@lark.tu-

sofia.bg

Keywords: java performance programming techniques

The paper describes some programming techniques for improving of Java code
performance. Few programming code samples are considered, as most common to appear in
a program’s code. Proposal for replacement of these code samples with ones using less
computer resources (CPU – central processing unit and memory) is made. Diagrams of used
computer resources are shown, so benefits from proposed code samples are easy to observe.
By using comparing type “a code sample versus another code sample” is easy to find
bottlenecks and overhead points in a program code, and thus optimize it. An optimized
program code leads to faster execution and/or less memory usage, so a programming task
will require less powerful hardware. A well-written program code can significantly improve
performance of the Java application.

1. INTRODUCTION
Since Sun Microsystems created Java language it becomes more and more

popular. It can be used to represent server and client side of an application. A
powerful feature of the Java language is its portability. An application written in Java
language can be run on any operating system (which has Java Virtual Machine)
without need to recompile program’s code. The Java language portability is result of
using Java Virtual Machine, which is middle tier between the Java program code, and
the operating system. This leads to Java applications’ performance fall, and thus an
important disadvantage appears.

Performance of Java applications is not so fast as applications wrote on any native
(for operational system) language, which is problem of the Java language’s nature.
As far as there is a virtual machine (Java virtual machine) between the compiled code
(byte-code) and the operating system the native language will always be faster. One
disposes of two approaches in relation to the cited problem - hardware and software.
The first one is to compensate the slowness by using more faster, but more expensive
hardware. The second one is to improve the performance of the Java code through
programming techniques and specific features of the Java language.

By using good designs, following good coding practices, and avoiding
bottlenecks, Java applications usually run fast enough. However, the first (and even

mailto:ditenev@lark.tu-sofia.bg
mailto:ditenev@lark.tu-sofia.bg

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

several subsequent) versions of a program written in any language are often slower
than expected, and the reasons for this lack of performance are not always clear to the
developer [1]. Usually there are few ways (depending on the Java language) to
complete a desired programming task. By using the appropriate programming
technique, it is possible to make the program’s code much efficient.

Through examining different programming techniques, and performance
comparing of each other, a software developer can easy choose the appropriate ones,
and thus remove many bottlenecks and overheads in a Java program. The result is
faster Java code execution, less memory usage, and thus use of less powerful
hardware to complete a programming task.

The aim of the article is not only to show better Java programming techniques,
but also to provide clear information how exactly a code sample is better (faster, less
memory consumed) than the usual used Java code.

2. ANALYSING PROGRAMING TECHNIQUES

In a program code there are many code statements, which can be analyzed.

Depending on the specific program’s application one statement, or another can
influence on the program execution. For example in a word processing program the
statements, which work with letters and String objects will influence the program’s
execution, because they will appear most often in the program’s code.

The article describes eight programming techniques, which can optimize the Java
program execution. Observed Java code samples are the most common used ones.
They can be used to optimize any Java program code, because they are used in almost
every program’s line, and do not depend on the specific problem which a Java
application solves.

The observed programming techniques are analyzed through including code
statements for measuring consumed CPU time and memory directly into analyzed
code. In this way any negative influence, which a profiling program can include into
measurements (additional computer resources which a profiling program consumes
through the measuring process) is removed. The code used to analyze a code sample
is as follow:

long startMem = Runtime.getRuntime().freeMemory();
long startTime = System.currentTimeMillis();
// here follows analyzed code sample
long endTime = System.currentTimeMillis();
long endMem = Runtime.getRuntime().freeMemory();

The implemented Java methods “Runtime.getRuntime().freeMemory();” and

“System.currentTimeMillis();” executes very fast (takes about 1ms) compared to the
analyzed code samples (executes between 800ms and 2000ms). Thus the included
measuring error is less than 0.25%.

The analyzed programming techniques follow.

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

2.1 Use of simple types
The simple types are ones of the most used in an application. Their use can not be

omitted. The observed simple types are the integer numbers (int, byte, long). The
default integer values in the Java are of ‘int’ type; so all numbers in calculations will
be caste to ‘int’ type (if number fits this value). The analyzed code sample shows that
for fast program execution it is better to use ‘int’ type, even your value fits into ‘byte’
or ‘short’ types (Fig. 1).

Tested code samples:
for(int i=0; i<size; i++); for(byte i=0; i<size; i++); for(long i=0; i<size; i++);

41.8%

49.5%

100%

0% 20% 40% 60% 80% 100% 120%

int

byte

long

Fig. 1 - Time usage for accessing a simple type

2.2 Use of simple type wrapper classes
The Java language offers wrapper classes, which corresponds to the simple types.

Wrapper classes are usually used for converting a simple type value to a string, or for
formatting purposes. However the use of a wrapper class instead of its corresponding
simple type leads to performance fall. The figures 2 and 3 show the memory and the
time (for accessing the value) used by a simple type variable and a wrapper class
instance.

Tested code samples:
int intArray[] = new int[size];
intArray = i;

Integer array[] = new Integer[size];
array =new Integer(i);

27.7%

100.0%

0% 50% 100% 150%

Simple Type

Wrapper Class

19.9%

100.0%

0% 50% 100% 150%

Simple Type

Wrapper Class

Fig. 2 – Memory Usage Fig. 3 – Time Usage

2.3 Use of String objects and string literals
Use of text in the Java language is capsulated in a class ‘String’. There are two

ways to create a string object in Java. The first one is to use the ‘new’ operator, and
the second one is to omit ‘new’ operator and let compiler handle the string object
creation.

By omitting ‘new’ operator the compiler can create an internal pool of strings.
Because the String object is immutable (its value can not be changed), many

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

references (instead of objects) can point to one and the same string into memory. The
figure 4 shows the time used to create a string using ‘new’ operator and using literals.

Tested code samples:
String str = new String(“Hello world!”); String str = “Hello world!”;

100.0%

29.2%

0% 20% 40% 60% 80% 100% 120%

String - 'new'

String - literal

Fig. 4 – Time usage for creation of a string object through ‘new’ operator and literal

2.4 Text concatenation
The Java language provides ‘+’ operator for string concatenation. This operator is

easy to use, but leads to great memory leak, and CPU usage. As String is immutable
object, a concatenation will lead to creation of a new String object, and garbage
collecting the old ones. This disadvantage can be overcome by using the StringBuffer
class and its ‘append()’ method. The figures 5 and 6 show the memory and time
consumed to concatenate a string using “+” operator and ‘append()’ method.

Tested code samples:
StringBuffer sb=new StringBuffer(“Hello ”);
sb.append(“world!”);

String str = “Hello ”;
str = str + “world!”;

0.71%

100%

0.00% 50.00% 100.00% 150.00%

append()

Operator '+'

1.60%

100%

0.00% 50.00% 100.00% 150.00%

append()

Operator '+'

Fig. 5 – Memory Usage Fig. 6 – Time Usage

2.5 Use of arrays versus ArrayList objects
The Java language includes classes, which can store and remove objects

dynamically, while array objects can not change their size. The analyzed technique
includes an instance of class ArrayList and a instance of a simple array. The results
show that access to elements of array object is much faster than accessing the
elements of ArrayList.

Tested code samples:
Integer val = (Integer) array[i]; Integer val = (Integer) arraylist.get(i);

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

18.10%

100%

0% 20% 40% 60% 80% 100% 120%

Array

ArrayList

Fig. 7 - Time used to access an array/ArrayList element

2.6 Collections reusing
As strongly object-oriented language, Java encapsulates all functionality into

classes. It is essential to reuse (if it is possible) any objects that we create and use in
the Java programs. The object reusing can increase the program speed. The results of
reusing a common Java object - ArrayList collection is shown on figures 8 and 9.

Tested code samples:
ArrayList arrList = new ArrayList();
arrList.add(new Integer(0));

arrList.clear(); // reuse
arrList.add(new Integer(0));

76.6%

100.0%

0% 50% 100% 150%

Reusing

Without Reusing

50.0%

100.0%

0% 50% 100% 150%

Reusing

Without Reusing

Fig. 8 – Memory Usage Fig. 9 – Time Usage

2.7 Type casting
The use of classes and inheritance lead to type casting. Type casting takes CPU

time, and thus it is important to omit it where it is possible (in loops for example).
The analyze shows that casting a parent object to its underlying child is the most time
consuming (considering casting a child object to its parent, and no casting) fig. 10.

Tested code samples:
Parent parent=new Child();
((Child)parent).aChildMethod();

Child child=new Child();
((Parent)child).aParentMethod();

Child child=new Child();
child.aChildMethod(); // no casting

62.6%

63.3%

100.0%

0% 20% 40% 60% 80% 100% 120%

No Cast

((Parent) child)

((Child) parent)

Fig. 10 – Time used for a type cast

ELECTRONICS’ 2004 22-24 September, Sozopol, BULGARIA

2.8 Classes inheritance
Implementing functionality into classes leads to inheritance. The Java language

presents anonymous classes. They are often used in events processing. Use of
anonymous classes is comfortable (the event processing is posted where the object is
created), but it consumes much more time than using a named class. The usage of
anonymous classes is not appropriate decision for processing often generated events
(mouse move for example) fig. 11.

Tested code samples:
Ainterface impl=new Ainterface() {
 public void aInterfaceMethod() {
 }
};
impl.aInterfaceMethod();

AinterfaceImplementation impl=new
AinterfaceImplementation();
impl.aInterfaceMethod();

100%

44%

0% 20% 40% 60% 80% 100
%

120
%

Named Class

Anonymous Class

Fig. 11 – Time used to call method of named and anonymous classes

3. CONCLUSION
The performance of an application can be improved in two ways: by hardware

acceleration, or by revising application’s code and removing code’s bottlenecks and
overheads. The article proposes few programming techniques, which can increase the
execution speed of the Java programs.

The analyzed programming techniques can significantly increase performance of
the Java applications. As the most common used ones they can be implemented in
any Java application, as simple code - replace. The software developer can observe
and decide which technique to use. The estimations of CPU time and memory usage
are visually presented, so it is easy to distinguish which technique to use. Usage of
fast code execution leads to use of less powerful hardware.

4. REFERENCES
[1] Shirasi J., Java Performance Tuning, O'Reilly & Associates Inc., 2000.
[2] Eckel B., Thinking in Java, Second Edition, Prentice-Hall, June 2000.
[3] Horstmann C., Cornell G. Core Java Volume I Fundamentals, Prentice-Hall, 1999
[3] Chan P., Lee R. The Java Class Libraries: An Annotated Reference, Addison Wesley,

September 1996

