Web — based Virtual Instruments for Remote Data
Acquisition

Vasil Janov Vasilev, Vassiliy Platonovitch Tchoumatchenko
Department of Electronics, Technical University of Sofia-
1756 Sofia, Bulgaria, vvasilev@lark.vmei.acad.bg

. A. Bagnasco . _
Biophphysical and Electronic Engeneering Department, University Of Genoa.
Via’All Opera Pialla — 16145 Genoa — itally, bagnasco@dibe.unige. it

Abstract. The paper describes a software environment for distributed instrumentation
ISIL.ab. The focus of this presentation is on the client-side technologies. Basic principles
and structure of the system is considered. Then TCP/IP based protocol for data
interchange is discussed. Two example applets are included: virtual multimeter and
virtual oscilloscope.

1. Introduction

The possibility of controlling . instrumentation by using a personal
_computer and the wide diffusion of computer networks have led to the
development of software environments where the physical presence of the
experimenter in the laboratory is not ‘required any more. Virtual interfaces to
instrumentation and computers networks provide the link between users and
the laboratory equipment, allowing a large learning community to share
practical activities. The experimental set up can be distributed in different
real laboratories, spread on a wide area network, and controlled by local
computers. Users can carry out experiments through the network and
practice transparently to real location and appearance of involved hardware.
Researches carried-on at University of Genoa during the latest years, has led
to the definition of a model [1] to share laboratories in Internet, and to the
implementation of a prototype (Internet Shared Instrumentation Laboratory
— ISILab — pronunciation: easy-lab). An innovative aspect of ISILab [2] is its
modular and scalable structure, so that different developers can contribute to
increase the mumber of experiments. The remote laboratory has to be
regularly updated in order to meet students and teacher needs: new
experiments are added and new instruments controlled. The insertion of a
new experiment implies to build a certain number of objects, such as web
pages for the experiment explanation, graphical user’s interface for
instrument control, instrument’s drivers, etc. The success and the
effectiveness of the environment are strongly conditioned by the way we can
add new components and reuse existing.

137



This paper focuses on the graphical user interfaces (GUI) fitting the

ISILab model. It is developed in co-operation between the University of

" Genoa and the Technical University of Sofia within the framework of the
NetPro II EC Leonardo da Vinei Project.

2. ISILab: an overview

ISILab is based on a distributed soﬁware environment (see Fig.1)
consisting of a main Virtual Laboratory Server (VLS), one or more Real
_ Laboratory Servers (RLS) and user/client stations. Internet links all these
componeénts.

£hent,

Figure 1: The system architecture.

The VLS is a network node hosting a web server, which delivers web pages
introducing users to the laboratory. Also, VLS applies the access control
policy, and logs users’ activities. The access is restricted on the basis of
login/password credentials and only authorized users can get into the
laboratory. RLSs manage the interactions between users and experimental
set-up. When a user asks for executing an experiment, VLS initializes the
communication between the client and the RLS, by allocating available
resources, and delivers user’s interfaces. These user’s interfaces are Java
applets that run on chient and. estabhsh a d1rect TCP connec‘uon with the
RLS

138




RLSs run a specific server-application (written in LabVIEW from
National Instruments [3]) that receives the inputs from users via TCP,
applies them to the instruments, which are connected via local bus (ie.,
IEEE488), retrieves the results and sends them back to users.

RLS Engine

Driver Driver Driver
Adapter 1} Adapteri Adapter N

Instrument Driver -

Interface Driver Instrument
Simulation

Figure 3: RLS photograph.

Figure 2: RLS’s sofiware architecture

Figure 2 shows the software architecture of the RLS. The Engine takes
care of separating the different user data spaces (Contexts), in order to
manage concurrent access to instruments. The Context is the data structure
that caches information about the current configuration of each instrument
irivolved in a specific experiment, carried out by a specific user. When a
user sends a command (by acting on the virtual instrument panel), his/her
Context is updated and applied to the appropriate instrumentation set.
Instruments’ responses are recorded in the Context and changes are sent
back to the user. A Context identifier is assigned to each user when an
experiment is selected; this assures the coherency among context data,
virtual iostrumentation and user identification during the experiment
execution. In order to communicate with the RLS, applets must send an
identifier that contains both the Context and the specific instrument IDs.
Driver Adapters convert the user controls (knobs, switches and so on) to
Instrument Driver inputs/outputs. So, they are sofiware modules that manage
the communication between the GUI and the instrument driver. The status of
the instrument, set by the user, is elaborated and translated to a specific call
to the instrument driver. ' '

Instrument drivers are general-purpose drivers that are usually provided

139



by vendors. They transform numeric values into instruments’ specific
. commands. Instrument drivers should be able to exchange data with both
real and simulated instrumentation.

This layered model facilitates the development of different GUls and
adapters for the same instrument. In this way, using ISILab approach, we
can control the same instrument using different type of GUL On Figure 3 a
photograph of real RLS is presented.

~ 3. Web-based client front—end

In ISILab the remote laboratory experiences have to be carried out via the
most popular web browsers. HTML pages, simple and portable carrier of
information, are used for introducing and explaining experiments. Java
applets are the natural choice for instrument control, because of the
flexibility in design, facilities in network programming and platform
independence [4].

Often, actual instruments have very hostile controi-panels. This is
because they have a small amount of controls (switches, knobs and so on),
which are used to set a large number of parameters. Since software layers
make the user interface independent from the controlled hardware, with

ISILab we are free to design panels with every shape we want. In this way, .

we can develop task-oriented applets, able to show to the user only the
setting that are strictly necessary to execute the assigned task. This kind of
interface takes advantages from the rationality of graphical objects like
menus, forms, list boxes, etc. This is very useful for implementing
didactical panel, oriented to generic concepts teaching, because it lets to
override the complexity of the actual control panel. On the other hand, if we
_want to teach exactly how the particular instrument works, we need a
detailed, high interactive, and realistic soft-copy of the real control panel.
Figure 4 shows examples of both task-oriented and realistic interfaces.

Task-oriented applets for ISILab have been developed using
AppletVIEW™ from Nacimiento™ [5]. This is a commercial framework
for developing instrument control panels. It offers a graphical editor that
automatically generated applets without requiring Java programming, and a
set of library that makes these applets able to communicate with
LabVIEW™ ysing a TCP-based protocol called VITP (Virtual Instrument
Transfer Protocol). AppletVIEW™ is very useful for realizing simple applet
in a very short time, but it is not practicable where we need more realism. In
this case the applet becomes a complex apphcatlon and we need to face its
development in different way.

140

~



Contaction indin

o fres
Statis B

Figure 4: The web-based environment.

4. Applets for realistic device functionality

Two applets that provide realistic device functionality are developed.
One is virtual multimeter ant the other is virtual oscilloscope. These applets
and all other that can be developed use VITP protocol to communicate
through the network. For this reason special Application Programming
Interface (API) for Java is created which to implement VITP over TCP/IP
connection. The architecture of this API is shown on Figure 5.

In central position here is the LVCConnector class, which provides all
needed methods for sending and receiving data of all types. It generates
events when data are received and propagates them to all registered listeners
(classes that implement DataReceivedListener. These are usually applets).
There is one additional class named DataTransformer which is responsible
for converting data types from VITP to Java and vice-versa.

On Figure 4 a screenshot from the multimeter applet is provided at front
of the other applications. The status bar in the bottom of the applet informs
about the status of the connection. The little circle right to the status arca can
have three colors: yellow - means waiting for connection to the server; red -
connection broken; green - connection established.

The Graphical User Interface (GUI) of the applet provides all necessary

141



number of elements to control multimeter’s behavior (power on/off button,
" measurement type selection buttons, range and resolution selectors and a
display).

DataTransformer LVCConnector—} Application (implements

DataReceivedListener)
LabView Server

Figure 5: VITP implementation API

The oscilloscope front-end applet prm)ides all needed elements to control
two-channel oscilloscope. This includes channel 1 and channel 2 coupling
and resolution and time resolution. X and Y axis offsets can also be set.

S. Conclusions

The developed system frees the experimenter from physical presence in
the laboratory. It also allows multiple users all over the world to participate
in common experiment with device equipment not necessarily situated in
one laboratory. .

By using Java Applet technology, specific task-oriented GUI can be
created to focus attention of the experimenter only on the information user
needs for the experiment. Graphical front-ends that reproduce the full
functionality of the real device can also be created.

References :

[1] A. Bagnasco, M. Chirico, G. Parodi, A. Sappia, A.M. Scapolla, “A Virtual Laboratory for
Remote Electronic Engineering Education™, in International Perspective on Tele-education and
Tele-leaming, Ashgate Book, 2000, pp. 1-14.

[2] A. Bagnasco, M. Chirico, A.M. Scapolla, “XML Technologies to Design Didactical
Distributed Measurement Laboratories”, IMTC2002 — IEEE Instrumentation and Measurement
Technology Conference, Anchorage, AK,USA, May 2002 s

[3] www.ui.com

[4] Chung Ko, Chi et Al, “A Web-Based Virtual Laboratory on a Frequency Modulation
Experiment”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 31, No. 3, August

[5] Travis, Jeffrey, “Internet Application in LabVIEW”, Prentice Hall, 2000

142




	137
	138
	139
	140
	141
	142

