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Abstract: - The paper presents both theoretical and experimental results of the passivity tech-
nique application on a circuit-oriented model of a buck-boost converter controlled in a state

space feedback. Nonlinear analysis based on system passivity technique and implementation of
the control law, comprised of linear combination of the state variables of a buck-boost de-dc con-
verter, provides converter's large-signal stability. The global stability condition is obtained by
studying the absorbed and dissipated power in the two-port large-signal model of the regulator.
Large-signal equivalent circuit for the converter is derived from its bilinear description, while the
stability condition is obtained by exploring the resulting two-port for the condition of the network
passivity. The influence of the control signal saturation on the circuit stability is taken into ac-
count as well. We used the linear model of the converter to approve its stability and the root locus
method to achieve proper values of the loop gain in order the desired transient response to be
_obtained. Simulations based on analytically derived relations are compared with experimentally
obtained results. It is confirmed that both simulation and experimental results presented are in
good accordance with theoretically derived predictions.
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I. INTRODUCTION

A Buck-Boost de-dc converter is nonlinear and variable structure system as the
most of the switched-mode dc-de converters are. The control signal, a PWM repre-
sentation of the control law, is applied to the switch of a power converter thus making
its topological structure to vary with time. Linear modeling validity is restricted
around the small signal steady state and is not suitable for the case of large input sig-
nal perturbances or for the large-scale variations of the load.

Various nonlinear techniques have been applied to achieve a large signal sta-
bility of switched mode DC-DC converters. In [1] a stability of a converter is ana-
lyzed by tracking the state space trajectories of a nonlinear system, while for its tran-
sient response an averaged model is used. In [2] a global stability is approved by
" Ljapunov based control design for a closed loop system. Modified averaging model
applied on a small signal control circuit for a pulsatory loaded converter to estimate
the controlled converter for the case of large signals is implemented in {3].

One of the methods that have been implemented to achieve stabilization of
non-linear systems is passivity-based control. The state-space interpretation of pas-
sivity is developed by the concept of dissipativity [4]. The close connection between
passivity and stability is given in [5] and [6]. The use of passivity for stabilization of
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non-linear systems can be found in [7], while its application for stabilization of de-dc
power converters is presented in [8], [9], [10] and [11].

In [12] a method of large-signal stability analysis for the buck-boost converter
topology is presented that is based on the similar analysis for the boost converter
given in [13]. The global stability condition is obtained by studying the absorbed and
dissipated power in the two-port large-signal model of the power converter. In this
paper we applied a passivity technique to achieve large signal stability of a PWM
controlled Buck-Boost converter (sce [12] for details), and implemented a linear state
‘feedback control of the converter by its bilinear model. Simulation as well as experi-
mental results are given.

IL.  ONPASSIVITY OF BUCK-BOOST CONVERTER
WITH CLOSED LOOP CONTROL

A dynamic system is considered as passive one if the rate of input energy is not
. smaller than the rate of the stored energy enlargement. The difference between the
input and the accumulated energy must be dissipated by the system itself, This means
that the passive system is unable to store more energy than externally received. For a
nonlinear system decsribed by:

x= flx)+glxh ' ' )
» = h(x)
to satisfy passivity criteria, according to Willems [7], there must exist a positive
semidefinite continuous differentiable function V(x(t) so that:

u‘yz%;ﬁ a'u+ &'y + pp(x) 2)
where &, S u p are non-negative constants, and @(x) is positive semidefinitive
function so that: @ (x)=0 = x=0 for all solutions of (2) and for all control variables
u(?) for which that solution exists.The item PY(x) describes the state of dissipativity.

It can be shown that for a nonlinear system with a feedback loop, consisting of pas-
sive subsystems, the overall system is also passive one.

II. APPLICATION OF PASSIVITY TECHNIQUE ON BUCK
-BOOST BY LINEAR STATE SPACE CONTROL

A buck-boost converter topology is shown in fig.1. Since the circuit changes its
structure depending on the value of the control variable u(t):{0, 1}, the state
equations [14] describing its behavior during the switching period, when the switch is
on (u=1) and when the switch is off (u=0), can be written. By introducing a duty
cycle d;e[0 1] as a new continuous variable, the state space equations can be written
in a form: : S ;

o Rem Aok, 4 by (e Ay, + (b b)), 3)
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Fig. 1 Buck-Boost Converter: Vy is the input dc voltage, L and C are the elements
of the converter, R is the load, and R, stands for the ohmic losses in the inductor.
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where, x, = {l' ] is the state vector whose elements are the inductor current and the
\A . ° . ¢
capacitor voltage, and _ )
" [-RJL 0 V. /L -R/L  -1L 0
4 = % . b = 3 = L b, = N
' [ 0 -1/Rc] ! { 0 ] 4 [ 1/c —I/RC} 2 { 0 }
which représents the bilinear description of the buck-boost converter. By substituting

the state variables and the duty cycle d; as sums of the equilibrium point value and the
coresponding perturbation values:

X, =X, +X d=d,+d 4)

and by separation of the equilibrium part of the equation from the dynamic one, al-

bi e

La—;=—R-Li-——dev+vd+(Vg +v,)d )

2 og)i-Xoid-ia ©)
at R

These equations describe the incremental variable relationships. They can be
represented by the equivalent two-port model circuit shown in fig, 2 [15]. In [12] is
shown that the control law that guarantees large-signal stability can be written as:

d=—a:-(Vg+ve)i+oz-iev=—~a:~((Vg ,)i=i,v ) €]
where o is a positive value parameter having a dimension of reciprocal energy, W,
while the dynamic part and equilibrium point are:

x= Ax+Bxd +bd ®)
v,d,
j R, +(1-d )*R
xe= le = L ( z) (9)
v, V,d,(1-d,)R
R, +(1-d,)’R
-R,/L -d,/L V. +v,)/L ,
A=d, +(4 -4)d,=| * ¢ 7 b=(4 - A4)x, +B = Wy +v) and d, =1-d,
d,/C  =1/RC » -i,/C
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Fig. 2 Modified equivalent two-port model of the converter

For the system passivity to be achieved, the power absorbed by the two-port
should be less than the power dissipated by the converter’s resistive elements. The
passivity of the system is used to guarantee that the equivalent circuit will tend to
zero incremental energy which means that the converter state will tend to its
equilibrium point. The control signal (duty cycle) can go to saturation; which means
that it is bounded between d,,;, and d,,,,,. The control signal saturation must be taken
into consideration in order to account for system stability. To satisfy this requirement,
~ the parametar a becomes a nonlinear function for d in saturation, [12, [13]:

Cax Do g < Do
amin amax
d G .
au) = {2 u> Do , While the control law is u = —a((V +v,)i—i v) (10)
u o & ¢ ¢
max
in. u < Fuin_
u [24

max

IV. DESIGN OF THE CONTROL LOOP AND SIMULATION RESULTS

Once the large-signal stability is guaranteed, the-design of the desired dynam-
ics of the switching regulator can be done. For this aim we can apply a linear analy-
sis, which does not take into account the bilinear terms in the differential equations.
The linear incremental model of the buck-boost converter is:

i =!:—‘RL/L —de/L][i]+l:(Vg-ll-ve)/L}d an
5| ld./c -urc)y -i,/C

For the control law d = -, ((V‘g +v,)i—i,v) the loop gain is given by:
T(s) =~ ((V +v, )@ —i V(S)J =

FUDE) CDGs)
[M +£]s + —1—[(1/’ * v‘)z + RLif)
T L . ,C . Lg Ig SRR S (12)

S ,,,s’,+(&-+—l— —_ &-+d;2
L RC LC\ R
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As an experimental case we used the following set of parameters for which the
linear analysis and the simulations were performed:
L=234pH  Simulation: Equilibrium point:  Test:

R=0,044Q Vg=12V v=T.18 V V=13V
C=224 pF Ts=20 ps i=1.85A
R=10Q d=0.5 d=0.5

e =0.949-10°

The control law described above is implemented in a circuit shown in fig. 3. To

show the good correspondence between the theoretically observed results and the
practical circuit behavior, inductor current and output voltage responses during the
startup are given reggectively on fig 4.
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Fig. 3 Schematic of the linear state feedback controlled Buck-Boost converter
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Fig. 4 Simulation: (a) Inductor voltage response b)Output current response during start-up
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Fig. 4 Responses for the inductor voltage (c) and output current (d) obtained experimentally

IV. CONCLUSION

Passivity based technique is implemented for a buck-boost converter design. The
condition for large-signal stability of the regulator is obtained for a linear control law.
Providing large-signal analysis the bilinear description is taken into consideration.
Having the global stability approved, the conventional linear control theory design is
implemented to achieve appropriate transient response. Results obtained by simula-
tion as well as experimentally are presented showing a good accordance with theo-
retically derived predictions.
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