ALECSIS / VADL-AMS MIXED-LANGUAGE SIMULATION

Bojan Andjelkovic, Milunka Damnjanovic, and Vanco Litovski
Department of Electronics, Faculty of Electronic Engineering, Beogradska 14, 18000 Nis
{abojan; mila; vanco) @venus.elfak.ni.ac.yu

Abstract. Mixed-domain simulator Alecsis has its own HDL, AleC++, suited for description of
both digital and especially for complex analogue models, supporting the good features of object-
orientation. Due to the importance of standard languages, VHDL-AMS is introduced as parallel
input opportunity. VHDL-AMS / AleC++ cosimulation is the point of this paper.

1. INTRODUCTION

Modern application-specific integrated circuits (ASICs) and system-on—ch1p
(SoC) designs frequently contain both analog and digital subsystems, embedded soft-
ware, and sometimes are used in conjunction with optical, magnetic and/or microme-
chanical devices. Therefore, we have not only analogue/digital (mixed-signal) de-
signs, but also mixed-domain integrated systems, where different physical processes
are interacting. For development of such systems a powerful simulator and appro-
priate modeling language are needed with the ability to describe and analyze all these
kinds of subsystems in the most efficient way. Recent development in the field of
mixed-signal hardware description languages (HDLs) has been determined by the
strong need for standardization. IEEE VHDL 1076.1-1999 (informally known as
VHDL-AMS where AMS stands for analog and mixed-signal) {11, [4], and Verilog-
AMS standards have been issued and they are intended to be universal tools for mod-
eling and documentation of both analog and digital devices and physical models from
other domains (mixed-domain simulation). However, in the industrial community it is
already clear that standardization is not going to solve all problems, such as, for ex-
ample, the fact that VHDL-AMS and Verilog-AMS can not be used for hardwa-
re/software co-simulation necessary in SoC design. One convenient solution is to en-
able the simulator to accept and integrate models developed in different languages.
" Such language-neutral simulation environment let designers use codes (descriptions)
already written in standard HDLs which are portable between different EDA tools,
while taking good features of the other language(s) to describe and test the compo-
nents which can not be described in standard HDLs. Finally, the whole complex sys-
tem can be verified using only one simulation tool. Mixed-language simulators are
. already available in the market (ADVance MS from Mentor Graphics, SMASH from
Dolphin Integration etc.). This paper describes one such approach. It discusses a
method of co-simulation with our Alecsis simulator/language environment and
VHDL-AMS pre-developed models.

Alecsis (Analogue and Logic Electronic Circuit Simulation System) [2] is a
mixed-signal and mixed-domain simulator with its own object-oriented HDL named
AleC++ suited for modeling and simulation of both digital and especially complex
analogue models. Developed as a superset of C++, AleC++ supports the good fea-
tures of object-orientation that enables modeling in a natural way. However, having

25



in mind the importance of standard languages (great number of designers that use it,
portable models, growing number of already developed models) and convenience of
using mixed-language simulation environment we have developed VHDL-AMS
compiler for Alecsis. The compiler enables accepting of VHDL-AMS code and Alec-
sis simulation with as low designer intervention as possible.

2. ALECSIS/ VHDL-AMS COMPILER SIMULATION SYSTEM OVERVIEW

Since AleC++, the hardware description language of simulator Alecsis, is based
on the programming language C++, a straightforward solution would be to compile
. the HDL code into appropriate object code, link it into the simulation kernel and di-

" rectly execute (compiled simulation). However, the model development is much sim-
pler if the medel code needs not to be compiled and linked to the simulation engine
* every time it is modified. The drawback of such approach is lack of code optimisa-
tion, so the model interpretation is slow. Since model code is executed many tlmes
during the simulation run, the code optimization is of great 1mportance

Alecsis combines good features of both approaches. From the user’s point of view
AleC++ models can be used both in.an interpreted and compiled simulation. How-
ever, even if the user chooses interpreted mode, the code is firstly compiled into
AleC++ object code and optimization is performed. After that the virtual processor
interprets the object code. In compiled mode, the result of compilation is stored in the
model libraries in AleC++ object code format. These compiled models can be later
used in system description or in description of other models, and all global symbols
will be resolved by the linker/loader before the simulation starts.

object code
A’eg++ AlG and simulation finiced imulation
code eC++ parameters inker. simulation
compiler loader engine
AleC++

A~

' object code
 VHDL-AMS \

d
code VHDL-AMS| ____—»

compiler A/eC++
p e object code

%

Figure 1. Organization ofAlecsis simulator with VHDL-AMS compiler

libraries

The simplest way to achieve AleC++/VHDL-AMS co-simulation is to use the ex-
isting simulation kernel of Alecsis simulator and to develop a new compiler for
VHDL-AMS language [3]. Figure 1 shows the co-simulation concept. At first the
compiler front-end analyses VHDL-AMS source code and generates the intermediate
data structures: It consists of two building blocks: lexical analyzer (scanner) and syn-
tax analyzer (parser). The lexical analyzer carries out the simplest level of structural
analysis and groups the individual characters of the source code text into the logical
entities having a collective meaning. The syntax analyzer then groups the simple ele-

26



ments identified by the scanner into the larger language constructs, such as entities,
architectures, statements, loops and functions. Also, in this phase the semantic analy-
sis is performed which determines type of variables, signals, terminals and quantities,
the size of arrays and so on. The compiler back-end takes generated intermediate data
structures and produces AleC++ object code. Due to similarities between AleC++
and VHDL-AMS, as it will be shown in the following section, the code generation
phase developed for AleC++ language is used nearly complete without changes for
VHDL-AMS compiler, too.

Compiled VHDL-AMS models can be used in the same manner as any other
AleC++ model. The only exception is that simulation control parameters must be ob-
tained from AleC++ file. Therefore, VHDL-AMS models can not be used in the in-
terpreted mode. : S

3. VHDL-AMS AND ALEC++ MIXED-LANGUAGE MODELING

Two problems must be solved in order to make AleC++/VHDL-AMS mixed-lan-
guage simulation possible: on what level would be the code combining allowed and
are the synchronizing primitives needed. Since the main goal of co-simulation here is
to enable reuse of models developed in the other HDL there is no need for code com-
bining inside a single language object (e.g. function, instance of component, etc.).

ALEC++ ' VHDL-AMS

architecture

function

function call

instance of component

module

function

function call
instance of module

T

node across quantity
current through quantity
flow free quantity
simple eqn, across eqn, through eqn simple simultaneous statement
ddt dot
integ

Figure 2. Correspondence between AleC++ and VHDL-AMS elements.
Shadowed items do not have appropriate counterparts

Since AleC++ resembles the semantics of standard HDLs such as VHDL-AMS,
the correspondence between language elements can.be easily established (Figure 2).
It enables VHDL-AMS compiler to form appropriate data structures which can be

27



translated into AleC++ object code and using of almost completely unchanged the
back-end of the existing AleC++ compiler. A VHDL-AMS model consists of an en-
tity describing the interface and one or more architectures containing the implemen-
tation of the model. When that model is instantiated in a structural description the de-
signer specifies which of several architectures to use for each instance. Every archi-
tecture with appropriate entity in VHDL-AMS corresponds to one module in AleC++
and they are compiled into the library object of the same kind. Another basic lan-
guage construct in both languages is function. Code combining under this level is for-
bidden. That means that it is not allowed to describe one process or equation in
VHDL-AMS and another in AleC++ inside the same module/architecture. The

mixed-language simulation is enabled through the instantiation of the subsystems

(components in VHDL-AMS and modules in AleC++) and calling functions de-
scribed in. the other HDL. Thus, it is possible in VHDL-AMS descriptions to use
components and call functions implemented'in AleC-++ and vice versa.

"VHDL-AMS uses the theory of differential and algebraic equations (DAE’s) for
describing the continuous systems. A new class of objects, the quantity, is introduced
to represent the unknowns in the system of DAE’s. For notating DAE’s a new class
of statements known as simple simultaneous statements is introduced in
VHDL-AMS. AleC++ has similar language constructs for writing equations. Three
forms of describing equations are used: one for non-conservative and two for conser-
vative systems with across and through quantities. Since the way of writing equations
is almost the same in both languages VHDL-AMS compiler can easily determine
contributions of the equations from VHDL-AMS model to the system of equations
describing the whole design.

Through the instantiation, ports of the component are bound and parameters are
passed to it. Also, through the function call actual arguments are passed to the fun-
ction. Ports and parameters passed to the subsystem or function may belong to diffe-
rent types. Since, both languages, AleC++ and VHDL-AMS, have very complex and
powerful data type system it is very important to establish the data type correspon-

“dence. Due to the same machme representation it is easy to accomplish that. If the de-
signer creates new data type, the same name and the equivalent description has to be
used in both languages. As opposed to earlier language versions VHDL-AMS intro-
duces a new two-level type system: the types already inherent within VHDL’93 and
the natures. Natures represent distinct energy domains (electrical, thermal etc.). Its
declaration consists of specifying nature’s “across” and “through” types. Therefore,
type information in the intermediate structures is represented by type symbol and na-
ture symbol instances. All instances of object (except for terminals), literal, subtype
and subprogram symbols are linked to their corresponding type symbol and all in-
stances of terminals and subnature symbols are linked to their corresponding nature
symbol. Furthermore, nature symbol instances are linked to the symbol instances de-
noting their across and through types. Since a branch quantity is declared with refe-
rence to two terminals, and terminal is declared to be of some nature, the type of
branch quantities is derived form the nature of their terminals.

28



Thanks to the fact that both languages produce the object code of the same for-
mat, the simulation engine and virtual processor do not know which compiler has
prepared the information. Since the interference boundary of the two languages is
limited to library objects, no additional synchronization mechanism is needed.

4. MIXED-LANGUAGE SIMULATION EXAMPLE

A simple example of a summer/limiter is given in order to illustrate
AleC++/VHDL-AMS mixed-language description and simulation. Its architecture is
described in VHDL-AMS and defines input/output transform as a single algebraic
equation using a simple simultaneous statement. The role of the limiter is to clip the
summer output if it exceeds a certain range. This model is instantiated and approp-
riate simuiation control parameters are given in AleC++ file. VHDL-AMS model has
to be compiled first into the AleC++ object code, and then the whole system is simu-
lated using Alecsis. VHDL-AMS code describing the summer/limiter is shown in
Fig. 3 and the corresponding code for the circuit verification is shown in Fig. 4.

entity summer_limiter is module summer (flow inputl, input2,
generic (gainl : real; -- gain of in- output) action (double gainl, double
put 1 gain2, double max_limit, double
gain2 : real; -- gain of input 2 min_limit);
max_output: real; -- maximum output
min_output: real; -- minimum output library "summer";

Vi -
root summer_test() {

port (quantity inputl, input2 : flow inl, in2, outlim;
in real; -- two input ports
quantity output : out real -- output summer sum;
port

Y . sum(inl, in2, outlim) {gainil=1.0;
end entity summer_limitex; gain2=1,0; max_limit=0.0;
: min_limit=-2.0;}
architecture summer of summer_limiter is )
timing {tstop=Period;

quantity sum: real; a_step=Period/1000; }
begin --\ plot {flow inl; flow in2; flow out-
1lim;.} >
-~ state defining equation
sum: l*sum - gainl*inputl - /* sinusoidal excitation for inputl
gain2*input2 == 0.0; and input 2 */
if (sum > max_limit) use action {
output: l*output == max_limit; double excit_out;
elsif (sum < min_limit) use process per_moment (
output: l*output == min_limit; excit_out = =
else 1.0*sin{(twopi*1000*now+3.141);
output: l*output - l*sum == 0; egn inl: {inl} = excit_out;
end use; egn in2: {in2} = excit_out;
}
end architecture summer; }
}
Figure 3 VHDL-AMS code describing the circuit Figure 4 Code for the circuit verification

29



The mixed-language simulation results are shown in Figure 5.

12 13 14 15

Figure 5. Simulation results of the summer/limiter. Traced signals are input and limited output
voltages of the circuit

5. CONCLUSION

_ AleC++ is a HDL that has all properties of a programming language, too. This
gives designers freedom in modeling very complex systems that are not conveniently
covered by standard HDLs. However, having in mind the opportunities that standar-
dization brings, a separate VHDL-AMS compiler for Alecsis simulator has been de-
veloped. In this sense, mixed-language descriptions and simulations are possible ena-
bling one part of the design to be modeled in AleC++ and exploiting its important ad-
vantages, while the other part (pre-developed models in VHDL-AMS) ‘may be given
in standardized form. It gives designers the comprehensive environment they need to
develop analog/mixed-signal circuits and SoC while they still can exploit the power
of using portable models already developed in standard HDLs.

REFERENCES

[1] - , "IEEE Standard VHDL Language Reference Manual (Integrated with
VHDL-AMS changes) - Std 1076-17, draft version, New York, IEEE, 1999,

[2] D.Glozic et al., "Alecsis 2.3, the simulator for circuits and systems. User’s man-
ual”, Laboratory for Electronic Design Automation, Faculty of Electronic Engineer-
ing, University of Ni§, Yugoslavia, LEDA — 1/1998.

[3] V. Litovski, Z. Dimic, M. Damnjanovic and Z. Mrcarica, “Electronic circuit
simulation in a mixed-language environment”, Miroelectronics Journal, Vol. 29, No.
8, 1998, pp. 553-558.

[4] E. Christen and K. Bakalar, “VHDL-AMS - A Hardware Description Language
for Analog and Mixed-Signal Applications”, IEEE Trans. CAS-II, Vol. 46, No. 10,
1999., pp.1263-1272.

30



	025
	026
	027
	028
	029
	030

