The voltages in the circuit’s elements in the power supply circuits and many industrial applications change under the effect of different reasons, which results in arising of not operating modes. This problem imposes the implementation of circuit’s variation of inverters with improved load performance.

The paper presents the description, analysis and design of parallel works of links in resonant inverters with capacitance voltage limitation. An approach to analysis for the distribution in links, working at a parallel in thyristor resonant inverters is considered. Expressions for the average values on the diversions of the current in the first included link are obtained towards the average arithmetical value of the current in the case of work with the separate capacitor and a common inductance. These expressions are given a possibility to determine the diversion of the current trough the link at assigned parameters of the inverter chain. A PSPICE simulation results are given. Typical steady state waveforms of the inverter output voltage for a resonant mode is shown.

I. ВВЕДЕНИЕ

По време на протичане на технологичните процеси вследствие на промени, които настъпват в товара или в резултат на други съвместения се променят напреженията върху активните и пасивни елементи в автономните инвертори (АИ). Подобни ефекти довеждат до възникване на недопустими режими на работа в силовите схеми. Този проблем съсредоточи усилията на специалистите в реализиране на схемни варианти на АИ с подобрени товарни характеристики. Основният подход на работа е концентриран върху възможностите, които предлагат силовите конфигурации за добавяне на допълнителни елементи (ограничителни диоди или група от индуктивност и диоди), чрез които се постига ефект на ограничаване на схемните напрежения. По този начин се осигурява стабилност в работата на силовата схема.

В настоящата статия се разглеждат въпросите, свързани с подобряването на характеристиките при паралелна работа на резонансни инвертори (РИ), които са получили голямо практическо приложение [1].

Особеност на дискутираната схема, показана на фиг.1, е свързването на звената към общин товар с отделни кондензатори, но с общ комутиращ индуктивност.
II. Анализ на процесите в схема за паралелна работа на резонансни инвертори с ограничители диоди

Изяснянето на анодните индуктивности извън отделните звена и получената конфигурация на схемата с общи точки на анодите на горната група тиристори и съответно на катодите на долната група тиристори позволява използването на една обща RC група (за намаляване на пиковите напрежения) за всички тиристори.

В схемата и анализа са използвани следните означения: E_0 – захранващ източник със средна точка, C_k - комутиращ кондензатор, L_{K1} и L_{K2} - комутиращи индуктивности, R_T и L_T параметри на активно-индуктивен товар, C_T - компенсиращ кондензатор, D_1 и D_2 - ограничители диоди. Рамената на всеки мост са разделени на две групи: горна – с тиристори T_1, T_3, T_{N-1} и долната група – с тиристори T_2, T_4, T_N.

Работата на схемата се разглежда за случая, когато управляващата честота на тиристорите f е по-малка от резонансната f_0 на еквивалентния трептящ кръг или т.напр. режим с пауза. Кондензаторите C_1, C_2, ..., C_N се подбират със стойност, която удовлетворява условието:

$$C_1 = C_2 = C_N \text{ и съответно } C_1 + C_2 + ... + C_N = NC \approx (5\div6)C_k$$

Управлението на тиристорите става чрез едновременно отпушване на тиристорите T_1, T_3, T_{N-1} и в противофаза тиристорите T_2, T_4, T_N, при което комутиращият кондензатор C_k започва да се презарежда (фиг. 2).

Фиг. 2 Графика на тока $i_{Rd}(t)$ през товара и напрежението на комутиращия кондензатор u_{Ck}
Когато в хода на процеса на презареждане, напрежението му достигне до стойност E_0, равна на половината от захранващото напрежение E, се отпуска ограничителният диод D_1, напрежението върху комутиращия кондензатор C_K се ограничава на стойност E_0 и същевременно се осигурива затворен контур на тока през товара $Z (R_T, L_T) | C_T)$. Щъгът θ_1, който съответства на момента на отпускване на диода D_1, фиксира края на интервала на консумиране енергия от захранващия източник. В следващия интервал [θ_1, θ_2] схемата не консумира енергия от захранващия източник и в θ_2, токът през провеждащата група тиристори става равен на нула.

Тази схемна конфигурация съчетава ефекта на ограничаване на схемните напрежения и в частност (при товар настроен на резонанс и фиксирана управляваща честота) ефекта "дозиране на енергията".

При така приетите условия (1.1) сумарният разделящ кондензатор NC ще оказва слабо влияние върху колебателния процес и за опростяване на анализа неговото действие ще се пренебрегне. Анализът на схемата се извършва и при предположение, че преходните процеси в схемата са завършени и режимът на работа е установен.

II.1 Анализ на електромагнитните процеси в интервала на консумиране на енергия от захранващия източник

Еквивалентната схема при паралелно работещи звена в интервала на консумиране на енергия от захранващия източник $[0, \theta_1]$ е показана на фиг. 3.

В еквивалентната заместваща схема е въведено съпротивлението R_3, чрез което се отразяват загубите в силовата схема, като например загуби в съединителните проводници, в силовите ключове и др. Но в процеса на анализ за опростяване на изчисленията неговата стойност ще бъде пренебрегната.

При това положение диференциалното уравнение, което описва процесите в този интервал е:

\[
L_i \frac{dI}{dt} + \frac{1}{C_k} \int i dt + u_{ck}(0) + \frac{1}{C_e} \int i dt + u_{ce}(0) + R_e I = E_0,
\]
където i_1 е резонансният ток в интервала на консумиране енергия от захранващия източник, $L_{K1}=L_{K2}=L_K$, $Re < 2\sqrt{\frac{L_K}{C_0}}$, $C_0 = \frac{C_KC_e}{C_K + C_e}$.

При решаването на (1.2) трябва да се има пред вид, че в установен режим на работа началните условия в схемата при поредното включване на съответния тиристор са:

\[
\begin{align*}
 \left\{
 \begin{array}{l}
 i(0) = 0 \\
 uck(0) = -E_0 \\
 uce(0) = -U_{Ce}
 \end{array}
 \right.
\]

Резонансния ток $i_1(t)$ се получава от вида

\[
 i(t) = \frac{2E_0 + U_{Ce}}{\omega_0 L_K} e^{-\delta t} \sin \omega_0 t,
\]

където $\omega_0 = \sqrt{\frac{1}{L_K C_0} - \frac{Re^2}{4L_K^2}}$ е резонансната честота на последователния кръг.

От друга страна като се има пред вид свойството на схемната конфигурация, а именно, че напрежението върху комутиращия кондензатор C_K не надхвърля стойността на захранващото напрежение и се вземат под внимание специфичните за схемата гранични условия

\[
 \left\{
 \begin{array}{l}
 uck(0) = -E_0 \\
 uck(\theta) = -uck(\theta_1),
 \end{array}
 \right.
\]

след несложни преобразувания и решаване на изразите (1.5) се определя въгла θ_1, който съответства на момента на отпускване на ограничителните диоди [2].

\[
 \theta_1 \approx v(\pi - \arctg\sqrt{4Q_0^2 - 1}),
\]

където са въведени следните коефициенти: $v = \frac{\omega}{\omega_0}$ - коефициент на прекъснатост; Q_0 - качествен фактор на последователния резонансен кръг.

При така направените изчисления напрежението на еквивалентния кондензатор C_e е пренебрегнато, тъй като в този интервал то е пренебрежимо в сравнение с това на комутиращия кондензатор C_K. Целта на синтеза на схемната конфигурация е именно процесите на ограничение да се отнасят за комутиращия кондензатор.

Въз основа на направения анализ се доказва едно важно свойство на схемата, а именно, че при промяна на товара, увеличаващ качествения фактор на резонансния кръг, ограничителните диоди се отпускват при по-малък въгъл θ, което довежда до автоматично намаляване на напреженията върху елементите. При така избрания режим на работа, стойността на тока, който протича през всеки един от тиристорите намалява N пъти в сравнение с общиия ток.
II.2 Анализ на электромагнитные процессы в схеме в интервале, когда не се консумира на енергия от захранващия източник \([\theta_1, \theta_2]\)

След отпадането на ограничителния диод \(D_1\) се променя конфигурацията на силовата схема.

Диференциалното уравнение, описващо процесите в интервал \([\theta_1, \theta_2]\), когато не се консумира енергия от захранващия източник се променя и има вида

\[
L_k \frac{di_2}{dt} + L_k i_2(\theta_1) + \frac{1}{C_e} \int i_2 dt + uC_e(\theta_1) + R_e i_2 = 0,
\]

където \(\omega_2 = \sqrt{\frac{1}{L_k C_e} - \frac{R_e^2}{4L_k^2}}\) е резонансната честота на еквивалентния последователен кръг.

Инвертиращият ток \(i_2\) в този случай е с ненулеви начинни условия. Следователно

\[
\begin{cases}
i_i(\theta_1) = i_2(\theta_1) = I_N \\
uC_e(\theta_1) = -UC_en = -\left(2E_0 \frac{C_k}{C_e} - UCem \right)
\end{cases}
\]

След решаване на (1.7) при условие, че \(R_e < 2\sqrt{\frac{L_k}{C_e}}\), се получава изразът за моментната стойност на резонансния ток \(i_2(t)\)

\[
i_2(t) = \frac{UC_en}{\omega_2 L_k} e^{-\delta t} \sin \omega_2 t + I_N e^{-\delta t} \left(\cos \omega_2 t - \frac{\delta}{\omega_2} \sin \omega_2 t\right).
\]

За напрежението върху еквивалентния кондензатор \(C_e\) се получава съответно

\[
uC_e(t) = -UC_en e^{-\delta t} \left(\cos \omega_2 t + \frac{\delta}{\omega_2} \sin \omega_2 t\right) + \frac{I_N}{\omega_2 C_e} e^{-\delta t} \sin \omega_2 t.
\]

В процеса на анализ трябва да се разгледат и въпросите, свързани с разпределението на токовете в паралелно работещите звена в тиристорните резонансни инвертори. Разглеждането се прави по отношение на тока в първото звено.

Средното отклонение на тока \(\Delta I_1\) при дадени параметри на инверторната верига съгласно [3] има вида:

\[
\Delta I_1 = \frac{\omega_0 n - 1}{2n} \frac{kE_0}{L} \Delta t r C \left(1 - e^{-\tau / r C}\right) + \frac{\omega_0}{2\pi} \Delta U \frac{\theta_1}{\tau} \left[t - r C \left(1 - e^{-\tau / r C}\right)\right],
\]

където \(\tau = \pi / \omega_0\); r-общо активно съпротивление на звена. Приема се, че кондензаторите в паралелните клонове имат еднакви електрически параметри.
И. Компютърно симулиране на паралелна работа на РИ с ограничителни диоди

Със симулатора Design Lab 8.0, учебна версия са извършени
симуляции с цел потвърждаване на резултатите, получени при обобщения
анализ на паралелна работа на РИ с ограничителни диоди от фиг. 1. Схемата,
която е симулирана се състои от две паралелно свързани звена.

Данните за схема са показани в таблица 1.

<table>
<thead>
<tr>
<th>Дадено:</th>
<th>$f = 4.2$ kHz;</th>
<th>$P = 4.4$ kW;</th>
<th>$E_0 = 120V$;</th>
<th>$U_T = 125V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_T, Ω</td>
<td>$L_T, \mu H$</td>
<td>$C_T, \mu F$</td>
<td>$C_K, \mu F$</td>
<td>$L_K, \mu H$</td>
</tr>
<tr>
<td>Известно</td>
<td>0.14</td>
<td>21</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>От PSPICE</td>
<td>0.14</td>
<td>19</td>
<td>130</td>
<td>20</td>
</tr>
</tbody>
</table>

Графичните резултати от симуляцията с PSPICE са показани на фиг. 4 –
dадени са токовете през тиристор T_1 и през общия контур $I(L_1)$. Илюстрирани
са напреженията върху товара $u(C_T)$ и комутиращия кондензатор $u(C_K)$. От
показаните диаграми се установява, че токът през всеки един от силовите
елементи е два пъти по-малък в сравнение с общи ток. Чрез подбраната
стойност на разделящите кондензатори C_1 се постига капацитетното
разделение на звената.
Въз основа на получените резултати за този вид схеми може да се направят следните изводи:

1. Схемите с паралелно работещи звена позволяват да бъде намалена стойността на тока, който протича през силовия тиристор. За конкретната двузвенна схема токът през тиристорите намалява два пъти в сравнение с общия резонансен ток.

2. Приетото допускане в хода на обобщения анализ, с цел опростяване на изчислителните процедури, за пренебрегване на напреженията върху разделящите кондензатори не намалява точността на пресмятанятията. Относителната грешка не надхвърля 5%.

ЛИТЕРАТУРА

[3] Каров Р., Ковачева К, Разпределение на тока при паралелна работа на звена в тиристорни резонансни инвертори. ЕТ’95, стр. 92-97