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Abstract. The widening application of automatic external defibrillators (AED)
presents very strong requirements toward external electrocardiogram (ECG) signal
analysis. In a previous siudy the performance of five well-known detection algorithms
was assessed by lest signals from the ECG-signal databases of the American Heart
Association (AHA) and the Massachusetts Institute of Technology (MIT). The results
obtained were used as a basis for testing the noise sensitivity of three of these
algorithms. Realistic nowses were obtained by simulation and recording of signal
disturbance by various motions during resuscitation and defibrillation episodes (body
shudder, convulsions and gasps, cable movement, car transportation). The sensitivity
and specificity of the detection algorithms were evaluated using electrocardiogram
signals mixed with these noises.

1 Introduction ;
A number of studies have demonstrated that early defibrillation is the major solution
to increase survival rate from cardiac arrest (Charbonnier, 1994). Often a shock must
be applied in conditions of absence of a qualified person. The accuracy of the
automatic diagnosis should match the diagnosis of experienced medical personnel.

Reliable and accurate detection of ventricular fibrillation (VF) from the surface
electrocardiogram is a rather difficult task (Clayton er a/ 1993). It can be further
complicated in the presence of noise in the analyzed signal.

The sensitivity and specificity of five favoured detection algorithms were
assessed in a previous work (Jekova, 2000), with signals other than the ones used for
their evaluation by the respective authors. Three of these algorithms yielded
relatively good results and were selected for further consideration in conditions of
noise. In order to achieve an adequate comparison, it was decided to use the same
data segments as in the former study, by adding several types of noise.

2 Electrocardiogram signals and noise

ECG signal files containing SR and VF intervals were selected from the AHA and
MIT databases. Representative intervals of 8s with non-shockable ECG signals,
labeled for convenience ‘sinus rhythm’ (SR), which they usually are, and 8s with VF
were taken out of each file. A total of 71 SR and 90 VF episodes were thus collected.
The SR epochs were selected in exclusion of very low amplitude signals (below 0.25
mV), paced beats, gross artifacts, frequency above 150 bpm, and transitions from
normal to abnormal rhythms.
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Representative records of the two types of signals SR and VF are given in
figures 1a and 2a respectively.

The detection of SR and VF was only examined in this study. The separate
recognition of ventricular tachycardia (VT) required a modified approach, which
involved additional investigation, therefore it was not considered here.

Six types of noise recordings were reported by Dotsinsky et al.;1999. It was
decided that two of them — cardiopulmonary resuscitation (CPR) and arms movement
disturbances — should be not taken into account, as the accepted rules require
stopping CPR before automatic defibrillation.

Representative epochs of the other four types of disturbance were then chosen,
with an example shown in figure 1b (2b). This is a patient cable movement artifact.
The spectra of the artefactual signals were rather similar, containing well expressed
low frequency components (even after having applied 1 Hz high-pass filter), as seen
in the spectrum of the above disturbance (figure 3). The ECG records selected from
the respective databases were mixed with the disturbances. Preprocessing was applied
on all signals using: i) a notch filter to virtually eliminate powerline interference, ii) a
high-pass filter with cutoff frequency at 1 Hz to suppress residual baseline drift, and
1ii) a second-order low-pass Butterworth filter with a cutoff frequency at 30 Hz to
reduce muscle noise, following the approach of Thakor er al. (1990).

The signal to noise ratio (measured using peak-to-peak amplitudes) varied
from 20 for high amplitude ECGs combined with low amplitude noises, down to 2 in
the opposite case, and strongly depending on the specific time-interval of ECG and
noise (figure Ic and 2c).

3 Algorithms

A former study of five SR/VF detection algorithms (Jekova, 2000) was used as a
basis for the present investigation. The three algorithms showing best results were
selected for detailed evaluation. One was the time-domain procedure called
‘threshold crossing intervals’ (TCI), proposed by Thakor et al (1990). The two other
were frequency domain methods - the VF-filter (Kuo and Dillman 1978) and the
spectrum analysis (Barro er al 1989).

Each of the three methods was implemented as a computer algorithm by means
of the software package MATLAB. The selected ECG segments, combined with each
of the types of noise, were subjected to identification as SR or VF. The corresponding
sensitivities and specificities were computed.

Short descriptions of the three methods and their software implementation are
given below.

3.1 Threshold crossing intervals (Tt Cl). (Thakor et al 1990)

The signals are converted to binary impulses by comparison with a threshold. For
each one-second segment S, a threshold at 20% of the maximum value is set. The
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threshold is allowed to adapt every second to the signal amplitude changes. The time-
intervals between two consecutive crossings of the threshold are measured. Then the
mean TCI is calculated. N is the number of impulses in S; 7, is the time-interval from
the beginning of S back to the falling edge of the preceding impulse; 7, is measured
from the beginning of S to the start of the next pulse; 75 is the interval between the
end of the last pulse to the end of S; 7, is taken from the end of S to the start of the
next pulse.

If TCI= 400ms, the segment is classified as SR, otherwise it is VF, as we are
not considering VT in this study.

3.2 VF-filter (Kuo and Dillman 1978)
The VF-filter technique corresponds to a narrow band-stop filter applied to the signal,
assumed to be quazi-sinusoidal, with central frequency equivalent to the mean si gnal
frequency. The output is the VF-filter leakage. The mean period of a fixed length of
data is obtained from the equation:
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The narrow bandstop filter is implemented by combining the ECG data with a
copy of the data shifted by half a period. The VF-filter leakage is computed as:

m

b3

i=]

V,+V ,,
"7

&

This algorithm was originally applied (by its authors) in segments of signals
obtained by a monitoring system, where no QRS complexes or paced beats could be
detected. The signal amplitude was measured and two thresholds for VF-filter
leakage were set. If the signal was higher than the amplitude of the last detected QRS
(in a previous segment) divided by three and the leakage was <0.406, VF was
identified. Otherwise the leakage must be less than 0.625 in order to identify VF. We
did not apply QRS detection, therefore only the higher threshold was used for this
test.
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3.3 Spectral analysis (Barro et al 1989)
Spectral analysis is applicable to VF detection because of the narrow band of
frequencies, reported to be between 4 and 7 Hz (Murray er al 1985, Clayton et al
1991), compared to the wider frequency band SR signals, having components even
above 20 Hz.

Each data segment is multiplied by a Hamming window and transformed in the
frequency domain by Fast Fourier Transform (FFT). Four spectrum parameters are
obtained: the normalized first spectral moment (FSMN) and A, A,, A;:
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Here F is the frequency of the component with the highest amplitude (called peak
frequency) in the range 0.5-9 Hz;
Jiis the i-th frequency in the FFT between 0 and 100 Hz;
Amp; is the corresponding amplitude:;
A; is the sum of amplitudes between 0.5 Hz and F/2, divided by the sum of
amplitudes between 0.5 Hz and 20F,
A; is the sum of amplitudes between 0.7F and 1.4F divided by the sum of amplitudes
between 0.5 Hz and 20F,
A is the sum of amplitudes in 0.6 Hz bands around the 2-nd to 8-th harmonics (2F-
8F), divided by the sum of amplitudes in the span of 0.5 Hz to 20F.
VF is detected if FSMN<1.55, A;>0.19, Ax>0.45, A3<0.09.

4. Results and discussion
After having mixed signals and noise as described above, 8-second segments of SR
and VF were subjected to evaluation by the three algorithms and classified as
shockable or nonshockable rhythms. The sensitivity and specificity of the three
algorithms were computed. The results are presented in Table 1 for each type of
disturbance and, for comparison, with ‘pure’ signals.

Table 1. Sensitivities and specificities of the assessed algorithms

Algorithm Specificity [%] Sensitivity [%]
conv. | car | cab. | gasp | ‘pure’ | conv. | car | cab. gasp | ‘pure’
signal signal
TC1 69 72 | 66 | 70 75 94 94 | 90 93 98
VEF-filter 91 91 91 91 91 94 92 89 93 94
|_Spectrum 93 94 | 96 93 93 74 74 70 78 79

4.1 1CI

In a previous study, using ECG signals from the databases mentioned above, the
method had shown a high sensitivity of 98%, but a specificity of only 75%. As
expected, adding noise to the same signals lowered both parameters by about 5%
(mean). The worst result was obtained for the ‘cable movement’ type of disturbance.
4.2 VF-filter algorithm

As explained above, no QRS detection was applied in this study. Therefore, only the
higher threshold was used. Nevertheless, this algorithm allowed to reach the best
results both with noise-free and with disturbed ECG. The specificity remained
unchanged and the sensitivity was affected by an average of only 2%. However, the
cable movement artifact was again the most disturbing, reducing the sensitivity by
5%.

4.3 Signal spectrum algorithm

In our former work (Jekova, 2000) it was found that using the original descriptors,
100% specificity and only 3% sensitivity were obtained. The reason was the lower
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Figure 1. (a) Eight-second segment of a sinus thythm signal from the MIT vfdb — 427, signal 0, (b) Segment
of the patient cable movement disturbance; (c) combination of (a) and (b).
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Figure 2. (a) Eight-second segment of a fibrillation episode from the MIT vfdb — 427, signal 0; (b) Segment
of patient cable movement disturbance; (c) combination of (a) and (b).
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Figure 3. The spectrum of the patient cable movement disturbance.
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peak frequency (F) of the evaluated VF segments from the databases used (F=34
Hz), compared to the frequency band reported by the authors (4 to 7 Hz). The
following changes were then made: the rhythm was identified as VF if FSMN<2.5,
A2>0.35, A3<0.25. Al was not used, as it worsened the detection results. A3 might
be used, but it did not contribute to improvement. These changes were done in an
attempt to achieve the best results with noise-free signals, namely 79% sensitivity and
93% specificity.

The addition of noise decreased the sensitivity by 5% (mean), but the cable
movement caused a reduction of 9%,

There was a slight unexpected increase of the specificity for two of the
artifacts. This could be explained with the growth of the sum of amplitudes between
0.5 Hz and 20F caused by these noises, thus reducing the value of A2 and increasing
that of FSMN.

S. Conclusion

It was rather difficult to define the most disturbing types of artifact that could cover
by their particularities all significant real cases. Nevertheless, at least a first attempt at
a comparison is presented here. It seems to be useful for the assessment of these well-
known fibrillation detection algorithms.

The simulated artifacts and the results of this study might be used in the
development of newer algorithms with improved disturbance immunity. Excessive
noise will inevitably degrade the performance of any type of signal analysis scheme.
Therefore, the development of artifact recognition procedures with convenient
warning and/or analysis-blocking procedures, adaptable to the corresponding
algorithms, seems necessary.
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