A Case Study in Hardware-Software Co-Design of EPROM Emulators

Zdravko Karakehayov Emil Saramov
Technical University of Sofia Technical University of Sofia
zgk@computer.org egs@vmei.acad.bg

ABSTRACT

We present a case study in hardware-software co-design of an EPROM
emulator. The emulator is oriented towards 805 1-compatible targets. Two emulator
architectures are considered. In case of a microcontroller architecture for the
emulator, a target microcontroller running at 1 MHz will need an emulator
microcontroller with oscillator frequency 20 MHz. A successful emulator design
requires hardware-software co-design approach and a microcontroller plus ASIC
architecture is the only solution which provides sufficient application range. We
break down the ASIC architecture into data and control. Along with the data path -
controller hardware we introduce a communication channel which links both
microcontrollers. The ASIC has been implemented by two FPGAs ispLSI 1016
produced by Lattice. We used a hardware description language called ABEL as a
design entry language for both FPGA circuits. The Synario CAD tool was employed
for logic optimization. mapping and routing.

Keywords - Embedded systems, debugging tools, microcontrollers.

1. Introduction

Embedded systems design has been a hot topic for the past several years.
There are two important trade-offs which underlie the design of embedded systems.
First, the designers have to strike the balance between the target system parameters
and the design process in terms of resources. Unfortunately, our efforts to optimize
the design object, the embedded system, result in longer and more expensive
development cycles. The second trade-off comes with the borderline which the
design process puts between the embedded system's hardware and software. The
hardware-software trade-off has a significant impact on the system performance. A.
good starting point for the emulator case study can be Figure 1 which presents the
overall system architecture viewed as a distributed system. The embedded system
under consideration, the emulator, is a single processor system. So is the system that
will be tested, the target system.

The EPROM emulator can be used when the target system has one or more
EPROMSs. We remove an EPROM from the target and plug in the emulator cable.
Thus, the emulator RAM substitutes the target EPROM. The personal computer
downloads the code to the RAM.

The emulator single chip microcomputer controls the debugging process
according to the instructions from the PC.

PC Emulator Target

Microcontroller Microprocessor

RAM ﬁ___[_) EPROM socket

Figure | The EPROM emulator in conjunction with a PC and a target system

Microprocessor K

Figure 2 shows the EPROM emulator functionality broken into six subtasks.
The subtask "Set breakpoints" marks a certain number of addresses. When the target
system reaches a breakpoint address, the execution of the user program is suspended
and a program called Monitor is activated. The Monitor controls the communication
between the PC and the target system. Consequently, the emulator emerges with two
extra RAMs as shown in Figure 3. Essentially, RAMs are addressed in parallel.

The three-RAM architecture is motivated by the following considerations. The
simplest manner to organize a breakpoint is to replace the pattern of a certain
instruction with a jump to the Monitor. Inevitably, this solution imposes a limitation.
The breakpoint instruction must be at least two bytes long. As far as the 8051 family
is concerned, the method is not feasible for 44% of the instructions. We overcome
the problem by introducing the breakpoint RAM. In this case, we still need to carry
out the jump to the Monitor. The second extra RAM accommodates the Monitor
(RAM MON). Of course, we could cut down the emulator architecture to two RAMs
and place the Monitor in the user RAM. However, this will limit the accessible size
of the user program.

Apparently, the subtask "Stop the user program on a breakpoint" requires the
fastest reaction which will be a challenge for the selected architecture. The design
flow goes on with the following assumption: the target is based on an 8051
microcontroller.

When the target microcontroller runs a user program, the emulator checks the
breakpoint bit BP from the BP RAM. As far as the bit BP is not set, the emulator
moves the code from the USER RAM to the EPROM socket. When a set bit BP
occurs, the emulator emits the three bytes of the instruction LCALL to the EPROM
socket. The destination address of this instruction is an entry point in the Monitor.
Thus, the execution of the user program is suspended and the target microcontroller
runs the Monitor program. Beginning now, the emulator redirects the code from the
MON RAM to the EPROM socket.

Naturally, the emulator will make a decision of whether to insert a breakpoint
or to continue the execution of the user program within a certain period of time
which we call reaction time (tg). The reaction time determines a target oscillator
frequency, which must not be exceeded.

I The EPROM emulator functionality

Set breakpoints

rDownIoad a user program Run the user program l

I Stop the user program on a breakpoint

{ Examine and modify the target registers and memory

Figure 2 The EPROM emulator functionality shown in subtasks

The emulator microcontroller must test the signals CE,OE and BP. Also, the
change of the address line A0 is taken into account. The emulator must know if the
signal AO has just been altered. In this way, the design will be consistent with the
8051 feature to read bytes from the Program Memory ahead.

PC Emulator)
Microcontroller Target
Microprocessor

EPROM socket

Figure 3 The EPROM emulator with two extra RAMs

Unfortunately, there is another case when it seems impossible to find a
solution at a reasonable price. Assume that we would like to insert a breakpoint
immediately after a JB (Jump if bit) instruction. This instruction performs a
redundant read from the first address of the following instruction. The code is
ignored, but the breakpoint scheme is activated regardless of the result produced by
the conditional jump. As a consequence for our emulator: the user is not allowed to
insert breakpoints immediately after the program control instructions. The user could
work around this problem by adding NOP instructions where necessary.

The emulator microcontroller is selected to be a member of the 8051 family.

We focus on two architectures for the EPROM emulator: a microcontroller
architecture and a microcontroller plus ASIC architecture.

2. A microcontroller architecture

We assume that JB (JNB) instructions will be used to test the signals CE,OE
and BP. Thus, the reaction time becomes 8 cycles (96 oscillator periods). When we

put a few calculations into a table, the correspondence between the target and
emulator clocks immediately become obvious (Figure 4). For instance, a target
microcontroller running at 1 MHz will require an emulator microcontroller with
oscillator frequency 20 MHz. The calculations are based on BP RAM access time 50
ns and a correction of 20 ns which covers the delay introduced from buffers, the
cable and the decoding circuit in the target.

Target oscillator frequency

0.2 0.4 0.6 0.8 1.0 1.2
fosc (MHz)

Tosc =1/ fosc (ns) 5000 | 2500 | 1666.7 | 1250 | 1000 | 833.3

The reaction time in case of
the 80CL31 target
microcontroller

(o =5Ty 15— (M0 g | 24815 | 12315 | 8148 | 6065 | 4815 | 3981

(ns)

RAM_BP _ ¢
tace- =20 ns

The emulator microcontroller

oscillator frequency 3.869 | 7.796 | 11783 | 15.829 | 19.938 | 24.115
fosc ¢ =96/, (MHz)

Figure 4 The correspondence between the target and emulator microcontroller clocks

Furthermore, Figure 5 illustrates the design process when the subtask "Stop
the user program on a breakpoint" is moved from software to hardware. The
transition point is oscillator frequency of 1 MHz. The hardware implementation of
this time critical subtask would demand an ASIC.

Two different target microcontrollers are involved in this example - 80CL31
and 80C31. Figure 5 indicates the difference in the timing parameter TAVIV
(Address to valid instruction in), which may vary from one device to another. The
period of time TAVIV is used in the equation for the reaction time tg (Figure 4).

While the emulator architecture based on an §7C51 microcontroller with a 24
MHz crystal is suitable for target systems running up to approximately 1 MHz, a
microcontroller plus ASIC architecture expands the application range up to 36 MHz,
if the ASIC propagation time is 23 ns and the BP RAM access time is 40 ns.

The overall conclusion is that the EPROM emulator design requires a
hardware-software co-design approach and a microcontroller plus ASIC architecture
is the only solution which provides sufficient application range.

|O SOFTWARE |- HARDWARE _ |
: Emulator microcontroller : ASIC ; :
| 87C51 .———)lﬂlmﬁb Propagation time @———%‘
| | = I Target fosc
- . — 2 i
g 1) 3% MHz
e e e s 1
| 80CL31 (TAVIV = 5Tngc - 119) |
o 1
0 12 MHz
L i et i e e 4

et |

| 80C31 (TAVIV = 5Tggc - 55) |

3.5 MHz 33 i\AHz

Figure 5 The implementation of the subtask "Stop the user program on a breakpoint”

3. A microcontroller plus ASIC architecture

Figure 6 outlines a microcontroller plus an ASIC architecture. The picture
concentrates on the address and data paths. In order to distinguish between the
emulator and the target signals we add a prefix "Target" or "T" to all EPROM 1/Os.
The target microcontroller reset input is named TRST as well.

As can be seen in Figure 6, an ASIC links the target with the emulator
microcontroller and the RAMs. The ASIC passes the code from the user RAM to the
target and the user program is executed. In parallel, the breakpoint RAM emits the
BP bit. When a set BP bit occurs, the ASIC generates the three bytes long instruction
LCALL. From then on the ASIC conveys the code from the Monitor RAM to the
target.

4. An ASIC implementation

The ASIC architecture has been split into data and control. Along with the
data path - controller hardware we introduce a communication channel which links
both microcontrollers. The ASIC has been implemented by two FPGAs ispLSI 1016
produced by Lattice. We used a hardware description language called ABEL as a
design ehtry language for both FPGA circuits. The Synario CAD tool was employed
for logic optimization, mapping and routing.

5. Conclusions :

Precise system specifications are often not provided at the beginning of the
design process. The conceptualization used in the beginning of the design cycle
gradually matured in rigorous specification. We moved a task from software to
hardware and from then on continued the project by concurrent design of the
hardware and software parts. The ASIC implementation based on in-circuit
programmable FPGAs demonstrates an efficient design of a small-scale embedded
system. The FPGA not only provides the required timing parameters, but also allows
the hardware to be reconfigured for different target processors.

Emulator | 0 0 0 U—‘J

Data Data
Microcontroller
/) : RAM RAM RAM
BP MON USER
Address LCALL
Data

e et 75

ASIC L
1’\
Target L
:; TRST‘ Target address Targetdata TCE TOE
PC i Microcontroller EPROM socket
g

Figure 6 The EPROM emulator architecture in outline

6. Acknowledgements

We are grateful to Prof. Knud Smed Christensen of the Technical University
of Denmark who proposed the three-RAM architecture of the EPROM emulator for
this project.

7. References

[1] Data I/O Corporation, SYNARIO, ABEL-HDL Reference, 1996.

[2] Lattice Semiconductor, Data Book, 1994.

[3] David Pellerin and Michael Holley, Practical Design Using
Programmable Logic, Prentice Hall, 1991. 3

[4] Philips Semiconductors, 80CS5! -Based 8-Bit Microcontrollers, Data
Handbook 1C20, 1997.

[5] Wayne Wolf, Modern VLSI Design, Prentice Hall, 1994.

[6] Wayne Wolf, "Hardware-software co-design of embedded systems", Proc.
IEEE, vol. 82, No. 7, July 1994, pp. 967-989.

10

	5
	6
	7
	8
	9
	10

