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Abstract: A new approach to design variable IIR digital filters by using a cascade of N equal
individual filters of any order n is proposed in this paper. First, the approximation method for
lowpass filter specifications is outlined, then the general limitations of the method are investigated
and a compact formula is derived. Next, the limitations for the main canonic approximations are
investigated and convenient expressions are obtained. New first- and second-order filter sections,
permitting very easy tuning of the cutoff frequency, are developed and the design and tuning
strategies for highpass, bandpass and bandstop filters are proposed. Finally design examples are
given and the superiority of the new method compared to other known method is demonstrated
experimentally.

1. INTRODUCTION

Variable digital filters are important blocks and there are many design
methods for FIR and IIR variable structures already known [1]. IIR variable filters
are preferred for professional applications and they are usually designed by
employing the allpass (frequency) transformations of Constantinides [2]. But when
IIR prototypes are transformed, delay-free loops appear and no general design
method, avoiding this problem, is known until now. There are some approximate
methods to eliminate the delay-free loops, but, as a result, tuning is possible only
over some limited frequency range. The best among all known is the method of
Mitra, Neuvo and Roivainen (MNR)[3], employing truncated Taylor series
expansions and based on parallel all-pass structures with real or complex
coefficients. The main disadvantage of this method is the limited range of
frequencies over which the LP/HP (lowpass/highpass) cutoff frequency and BP/BS
(bandpass/bandstop) bandwidth may be tuned without degradation of its magnitude
characteristics. A new approach, based on usage of equal.first- or second-order
sections and thus avoiding any approximate presentations was proposed in [4] and
the range of tuning was considerably extended compared to that of the MNR filters.
The design method in [4] is, however, quite not general and there are, actually, 4
different design procedures - one for approximation based on equal first-order terms
and three for second-order terms. Our main aim in the present work is to try to
develop a unified procedure, including not only the above mentioned four cases, but
also approximation using equal terms of any order. Next, we will attempt to define
the fundamental limitations of the method based on approximation with equal terms
(sections). Finally, we shall try to develop some new first- and second-order
structures, suitable for realization of this type of variable filters. We shall concentrate
on obtaining and investigating mainly LP variable filters. Variable HP, BP and BS
filters can easily be produced by applying a corresponding allpass transformation
[11,[2] on the variable LP filter.
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2. LOWPASS MAGNITUDE APPROXIMATION USING EQUAL
INDIVIDUAL TRANSFER FUNCTIONS

2.1. Basic relations

The LP magnitude specifications to start the design of a variable filter are
given in a standard way: passband (PB) from 0 to o, (for digital filters) or Q_ (for
analog), stopband (SB) from o, or O, to infinity, maximum variation of the PB
attenuation 4, ,dB and minimum (SB) attenuation A,dB. In the process of
approximation we are looking for a total transfer function H(z) or 7(s) consisting of
N equal individual transfer functions H,(z) or T,(s), each of them of order »n. Thus
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In developing our approximation method we choose to work in analog domain
and to use the well-known Characteristic function k(Q).: It has appeared, on one
hand, to be extremely difficult to develop such a method directly in z-domain and
was shown in [5], on the other hand, that this approach (approximation in s-domain
with usage of k(Q2)) must be preferred. The squared magnitudes of the individual and
the total transfer functions will then be given as:

/
(@) = 1/(1+521k(9x2 L @) = 1/(1 +gz|k(Q)2)A @
k(QY) is taking always the squared values
0<[k(Q)|* <3 in the PB; k2 <|k(Q)* <o in the SB, ()
the values of k, and k, depend on the selected approximation method, the PB and SB
edge frequencies 2, and C), and on the order » and usually k%, << ks2 .
| 7.(Q) |2 is varying within the limits:
12 <|T; Q) <1inthe PB;  0<|7;()* <17 inthe SB, (6)
t,, and ¢, also. depend on Q, Q, the approximation method and », but,
additionally, they are connected to the coefficient €, predetermining the PB loss

variations.
The total transfer function | 7(Q) |? (4) will stay within the limits

T2 <T@ <1inthe PB;  0<|T(Q)* <77 inthe SB, )
and it is obvious that
2=11+e%k3) 1 =1(1+e%k?);
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T2=i, Trei?, 4 ==100l0pT?dB, T7 =107"%, 7¥ =16, (8)

2.2. Design procedure outline
The proposed procedure is based on a gradual increase of N and checking
whether 7(Q2) is entering within the given specifications. It includes the following
steps:
1. Select the type of the individual transfer function 7(s) (could be any
maximally flat of equiripple function) and its order » and start with some
initial value of N (for example N=1). Thus, the values of kp2 and k.’ are

readily known.
2. Calculate 2= TV = 107%"*", ©)
3. Compute the coefficient &: &” = (l/ki 1(1 t;)— 1], (10)
4. With this €? and T2 (8) check whether the following condition holds:

1/(1+52k§)N SFE. (11)
If “yes™, go to step 5. If “no” - increase N by one and go back to step 2.

5. Determine the individual transfer function T(s) using the values of & (10),
A/N, Q,, O and n. Many computer programs are available for this step.

2.3. General limitations of the method
It is clear that an approximation using N equal terms is far from optimal. First,
it is impossible to increase the SB attenuation without limits by increasing N,
because it will also decrease €. Then, having equal terms, we cannot place the zeros
of the transfer function arbitrarily in the SB to ensure any given A_. It is intuitively
clear that such an approximation is good for narrowband filters with moderate
requirements for the SB, but we need some more accurate expressions to evaluate the
limitations in the process of design. Starting from IT(Q)|2 (4) and substituting
€%(10) and ¢2(9), while taking the minimal value k} for | k() |2, we end at the

following estimation for the maximal value of I T(Q)l2 in the SB, predetermining
the minimal SB attenuatiori:

: N
. Lk

Investigating (12) for N> we ﬁnd that the minimal value of the SB
attenuation will never exceed the limit

A =AK . (13)

The limitation (13) is quite fundamental, it does not depend on the type of the

filter (it is valid not only for LP filters), and as the reasonable values of N (the

number of the equal individual transfer functions used) are far from infinity, the

limitations for the possible SB attenuation will be more severe than (13). The

method, as expected, is not universal, and not every given specifications will be met.
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It means that an additional step should be included in the design procedure from the
previous section - once k,” and k.2 are found (step 1), it must be checked whether
A, (13) is higher then 4, and if not, the specifications should be relaxed in order to

make the design possible. As far as H(e’”) can be given in the form (4), all relations
obtained in sections 2.2 and 2.3 are valid also for approximations performed directly
in z-domain.

2.4. Limitations for the main classical approximations

The evaluation of condition (13) can be simplified for each canonic
approximation and, additionally, it can be transferred in z-domain. For this we can
use the so called “rectangularity” - coefficient r, calculated in s- or z-domain:

r=Q,/Q, or r:(tanwé’r]/(tanw;], (14)

where 71 is the sampling interval.

1. Butterworth type of individual transfer functions
Taking into account the properties of the Butterworth approximation, we
obtain the following limitation, corresponding to (13):

Ao =4, /r" dB. (13)

sm

For the case of equal first-order sections it gives the condition already derived

in [4]
A= Ap[tanz %] / (tarf a’;j,dB (16)

and for equal second-order sections (without PB-ripples)
A =A,[r.dB. (17)

Smax

* Itis obvious that (16) is valid for all types of approximations.

2. Chebishev type of individual transfer functions
For this type of approximation we have derived the following general
limitation formula:

A=A chz(n Arch lj. (18)
r

For second-order individual transfer functions it reduces to:
A, =4l -1]. (19)
3. Elliptic type of individual transfer functions

There is no an easy way to calculate k,’ and k. for this approximation without
using elliptic functions. To get more compact results we normalize the analog
domain frequency specifications by

Q,=2,9,. (20)
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Then, using the theory of elliptic approximation [6], after some lengthy
derivations, we obtain the following general limitations:

Ag oy = /{ 2"%2 (MJJ for n - even 1)

i=l 1

n—1
r2n+2 IZ[ sn8 ((_ZIL)K(L)) for n — odd (22)

i=] h

where K(r) is a function of Jacobi, determined as an elliptic integral

do

7[/2
0 \/I—r sin? @ 0\/(—rle—r x )

and sn is a sinus elliptic-function.

Checking the realizability of given specifications throughout (21) - (23) could
be a tremendous task for a practicing engineer. Assuming that in most practical cases
n will be n = 2 and using the relation

sn(K(r)/2)=1/N1+~+1-77, (24)

we finally obtain the following expression:

mezAp(1+\/ﬁ)4/r4. (25)

In trying to simplify expressions (22), (23) for any given » in order to avoid
the calculation of special functions, we succeeded to derive a very simple and
compact formula for an approximate evaluation of the specifications:

K(r)= (23)

A
o ﬁexp[ni[z /n(16/(1- %)) . (26)
This formula should be used only for very selective filters having 0.9<r<1.
For lower values of r it will produce an error of more than (20-30)% compared to the

results from (21), (22).

3. LP FILTER SECTIONS IMPLEMENTATION

Each individual transfer function H(z) of order » can easily be realized by n/2
second-order sections plus one of first-order when # is odd. These sections must meet
the following requirements: (a) They must have a canonic number of multipliers in
order to minimize the number of the tunable elements; (b) They must permit an
independent tuning of the cutoff frequency ®,; It was shown in [4] that these sections
should have low sensitivity for poles near z=1 (typical for narrowband LP filters).

The standard form of the first- and second-order transfer functions with unity
DC gain, obtained after the approximation is
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where g; = 2 for the non-elliptic case.

It was shown in [4] that the best first-order section is the one given in Fig. 1a.
For the second-order terms we propose to use the universal structure, shown in Fig.
1(b), which we have developed starting from the low-sensitivity section from Ref.
[7]. The transfer functions at the LP output of Fig. 1a and at the Elliptic output of
Fig. 1b are:

In o—>®< z? '4—
y X
¢ + c> » > >
A % ,—4 >—>§ ®
Xz I v
v A 4 a
Out HP Out LP o
i ]
Out Elliptic Out HP
(a) (b)
Fig.1. First (a) and second-order (b) low-sensitivity sections
-1
c(l+z
Hypi(2)= ——*)4 ;
1+(1-2¢)z
)
(y =1y +2-b GEHB ;+iz_l+z_2
a(y-1)+2- aly -1)+2-
H grip (2) = 4 = =) (28)
2 1+(=2+b+2a)z +(1-b)z

The multiplier coefficients, obtained after sensitivity minimization, are
calculated from those in (27) using the formulae:

—1+g =g g3+2
I+g1+g2 g3-2
The numerators of the transfer functions at the other outputs are

c=051-g) a=051+g +g2); b=l-gy y= (29)

Nppi(2)=1-z"Y Nppy=051+z"2; Npypp=052-a-b)1-2z")? (30)

The cutoff frequency of the first-order section is easily tuned by trimming c.
The second-order section of Fig. 1b is having the remarkable quality to have its
cutoff frequency tuned only by changing the multiplier coefficient a. And, as g; also
depends on a, the zeros of the transfer function will change correspondingly. It is
important to mention, that 3 types of transfer function - namely LP and HP elliptic
and BS as well - can be realized at the output given as Qut Elliptic in Fig. 1b.
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4. VARIABLE DIGITAL FILTERS DESIGN AND TUNING

Variable LP and HP filters, according to our design method, are obtained
without traditional spectral transformations - tuning of the cutoff frequency is
achieved by trimming of ¢ or a ((28), Fig. 1). BP and BS variable filters with central
frequency o, are obtained from the LP prototype after the transformation

z =Fz" (z‘] - ﬁ)/(l = ,[)’z_') (“minus” for LP to BP transform); f =coswq. (31)

If the cutoff frequency of the LP prototype is ,,, the BW of the BP filter will
be BWg,= 0, -0, = 0, and that of the BS filter - BWy¢= 0.50,,, - ©,,, Where o,,,
is the sampling frequency.

Given the BP or BS variable filters specifications, they must be converted to
LP specification, then approximation using our method must be performed and
finally the corresponding LP to BP or LP to BS transformation (31) has to be
applied. The BW¥ of the filter will be tuned by changing v, and the central frequency
- by trimming B. When second-order sections (Fig. 1b) are used, the approximation
must be performed for the widest BW. If not, tuning in direction of widening of the
BW may cause in some cases growing of the PB ripple and violation of the
specification.

5. DESIGN EXAMPLE AND EXPERIMENTS

A variable LP filter is required with cutoff frequency tuned from 0.0027 to
0.0087 rad/s with specifications (for the central value ©, = 0.0057): ®, = 0.0017, 4,
= 2dB and 4, = 30 dB. Approximation with equal second-order elliptic individual

" n A " 0

Q06 Q01 005 02 QW5 00 0 0006 001 0055 002 0@ 00
FREQLENCY FRECLENCY
(@ (b)

Fig.2. Tuning of LP filters designed following the proposed method (a) and MNR-method[3] (b)

transfer functions meets the specifications with N=4. The tuning of the realization
based on the section of Fig.1b is illustrated in Fig.2a and it is seen that the entire
range of cutoff frequencies from 0 to 0.00ln is smoothly covered. The filter,
designed according to the MNR-method [3] is of third-order and the results of tuning
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of the parallel allpass structures realizations are shown in Fig.2b. It is clear that the
specifications for 4, are violated far before reaching the requirements for the range
of tuning of @,

6. CONCLUSIONS

A new very efficient approach to design variable IIR digital filters by using a
cascade of N equal individual filters of any order » is developed in this paper. The
method is very general and applicable for any order of the individual and the total
transfer functions. Some of the formulae for evaluation of the limitations are so
general, that they are valid for any type of approximation, any type of filters and even
for both s- and z-domain. The new second-order section, proposed in the paper, is
having the remarkable quality to have its cutoff frequency and the entire magnitude
response tuned in very wide frequency range only by changing a single multiplier
coefficient. The superiority of the new method compared to the famous MNR-method
is demonstrated experimentally.
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