Cheap Extension of Floating-Point Units for Interval
Arithmetic

Jurgen Wolff von Gudenberg
Universitat Wirzburg
email: jwvg@acm.org

Abstract

In the paper we show how a double-precision floating-point unit can be extended to support
interval arithmetic. Our current design starts from 64 bit double-precision format. We assume
that memory and buses use this format. We then represent an interval as 2 single-precision
numbers that fit into the same format. The unit is split into two tightly coupled single-precision
arithmetic units in order to perform one interval, one doubled precision or two independent
floating-point operations. . :

The design which is similar to the recently introduced multi-media architectures is applicable
for any two related precisions. It can further be extended to support double-precision interval
arithmetic. Then, 2 consecutive double-precision numbers representing the bounds are piped
to our unit.

For the IEEE single and double formats detailed simulations have shown that this can be
done with little overhead for addition and with moderate overhead for multiplication.

After a short introduction to interval arithmetic we specify our algorithms for interval
addition/subtraction and multiplication. For interval addition we consider a fast carry look
ahead adder which can be split into two adders by cutting the root of the tree and inserting
two new appropriate carry-in signals. A tree-like comparator is divided into two parts by
ignoring the final stage and delivering two independent output signals. Furthermore the shifter
unit can also be separated into two units. Here we assume a fast shifter with log(n) stages.
For each stage we require some new multiplexers. The logic to calculate the sticky bit has to
be doubled. The integer unit performing the calculation of the exponent has to be extended,
in our case for the IEEE format from 11 to 16 bit. This unit, then, is split into two & bit units.

For interval multiplication we implement a version of the 4-product method [11] which
computes the 4 different double length products of the interval bounds, and then rounds the
minimum and maximum. We have to extend the multiplier pipeline by two additional stages.
Another option is-to implement the 8-products method [11].

Interval addition can thus be carried out with the same latency as and interval multiplication
uses 1 through 2 cycles (or steps) more than the corresponding floating-point operation.

1. Interval Arithmetic

Interval Arithmetic is defined as an arithmetic for compact, continuous sub-

96

sets a,b of the real numbers. Let o € {4, —,-,/} then
aob={aoblacabeb} (1)

defines the corresponding interval operation. If the bounds are computer rep-
resentable, the represented set still is continuous. The theoretical definition (1)
can be implemented with efficient formulae depending only on the endpoints of
the intervals. To ensure that the exact result lies within the resulting interval
for every interval operation directed rounding towards toc has to be applied.
This outward rounding, indeed, has the consequence that interval arithmetic
may be used to control rounding errors, because automatically verified bounds
for the true solution or solution set are delivered. For a detailed treatment of
machine interval arithmetic we refer the reader to [5]. We denote downwardly
or upwardly directed rounded operations by enclosing the operator into V or
A, respectively.

1.1. Addition/Subtraction

Interval addition/subtraction is very simple to perform by adding/subtracting
the interval bounds and rounding the results appropriately

[a,b] + [c,d] = |[a e, bA]
[(J,,b] - [Cv d] = [lebé(’]

No extra conditionals are needed, and there are no specific exceptions.

1.2. Multiplication

[a,b] * [c,d] = [min(avr, ad, bsze, bd), maz(a &, a &, bAc,bAD)] (2)

In [11, 7] several alternatives to support interval multiplication by hardware
are discussed, some of those are considered in this paper: ;

The straight forward implementation of (2) is a simple but interesting alter-
native using nowadays processors, although 8 products and 6 comparisons have
to be computed, see [3]. Another algorithm starts with the computation of the
4 products of the bounds in double-length format, i.e. doubled precision, deter-
mines minimum and maximum, and then rounds. This yields a total number
of 4 multiplications, 4 comparisons and 2 roundings. Most frequently used in
software implementations is the following approach, based on a case selection to
save as many multiplications as possible. Table 1 displays the cases depending
on the signs of the bounds of the input intervals.

97

A=la,b] B=lcd AxDB
1T A>10,0] B>[0,0 [ae, bA]
9 A>[0,0] B<[0,0] (b, a &d]
3 A>[0,0] 0B b, bAd]
4 A<[0,0] B>1[0,0] (a7, bA]
5 A<[0,0] B<[0,0] (b, a A]
6 A<[0,0] 0B (a9, a]
7 0eA B> [0,0] (a7, b Ad]
8 0ed B <|0,0] (b, a Ac]
9 OcA 0eB [min(asid,bsc), maz(a b, bAd))

Table 1: Interval Multiplication

The worst case is (9). In each other case only one multiplication for each
bound is needed, but in (9) two directed products and one comparison per
bound must be performed.

1.3. Software Implementations

Intervals need twice as much storage space as floating-point numbers. The
operation times are theoretically twice as long for addition/subtraction, and
there is a factor of 2.3 for multiplication. These factors, however, cannot be
obtained in practice. Since intervals are no standard data types many optimiza-
tions cannot be performed. We measured a factor of 4 for addition/subtraction
and a factor of 10 for multiplication in the fastest implementation of interval
arithmetic known to us [6].

1.4. Applications

Applications of interval arithmetic reach beyond the range of safety critical
problems where verified results are mandatory. In global optimization especially
the discarding of large sections is supported. In computer graphics, rendering
images, ray-tracing, e.g., interval algorithms have been proposed that are su-
perior to the established floating-point versions in terms of efficiency and, of
course, reliability [9]. Here often single precision suffices.

2. Architecture Extension

We propose a simple and cheap extension which preserves the existing bus
band-widths and control mechanisms as far as possible.

Our main idea is to represent the 2 single precision endpoints of an interval
in a double precision word and simultaneously to compute the 2 bounds in

98

parallel by an extended double precision FPU.

3. Interval adders

In this section, we will point out, how to extend a given double precision
fpadder to perform single precision interval addition. For the sake of simplicity,
we suppose the following simple interface of the adder: The 2 operands are
input to the unit using two 64bit input buses, the output is delivered by a 64
bit result bus. Usually, a double precision adder is pipelined, and this can be
done in many different ways. In order to illustrate, that such adders can be
easily extended, we consider the following example of a floating-point addition
pipeline:

JSaISb lEa }Eb JMa 1Mb
Unpack, compare, swap]
[SalSh TEa=Erl Eh TA [B

]

[T 1 | I I
If Sa|=Sb then B=-B fi, d=Ea-Eb j

[[SalSh TEr [d Td>TTA B -
[T I I I I

Variable arithmetic right shift of B byq

[SalSh TFEr [d>TTA B
T T 1 I I I

]

Sign computation R=A+B }

[SaXorShISr JFr TR R (')1?*171‘|
[T I I I I

Round or result conversion R=-R

[Sa Xor ShISr [Er TR R>0 [d>1
B I I I I

f—\'—_y—h'—/—

Variable left shift (normalization) }

Sr Er Mr
| E]

Figure 1: A Floating-Point Addition Pipeline of Latency 6

This unit is split to obtain an interval addition pipeline of the same latency
6. The basic idea is to extend all components of the exponent unit to 16 bit
and then to split all integer and floating-point components of the unit:

1. We can cut off the last stage of a tree-like comparator by one multiplexer,
thus delivering 2 results.

2. A converter that consists out of independent inverters and an incrementor
can be split analogously to an adder.

99

5.

. Each stage of a variable length shifter is cut in the middle by d 4+ 1 mul-

tiplexers, if the stage performs a d-bit shift. A second sticky bit logic has
to be supplied. Nevertheless this sums up to only 12% of the total cost of
the shifter.

. One single multiplexer switches the last stage of our carry-look-ahead adder

in order to get two independent results.

Two independent rounding units have to be supplied.

A more detailed specification of the units is contained in [10, 3, 4].

4. Interval Multipliers

We, suppose, that 2 operands are input to the double precision FPU using
two 64bit input buses. In order to make the discussion more clear, we suppose,
that the double precision multiplier pipeline has the following stages:

1.

6o

> W

split mantissae and compute 4 partial products.

. add partial products in carry-save encoding.

. final carry-look-ahead addition of the product.
. normalize and add exponents.

. round and adjust exponent.

6.

normalize again.

Mantissa multiplication in the first 3 stages can be split for single precision
interval multiplication relatively easy:

1.
2.
3.

(52 SR S

T

compute 4 separate products of interval bounds.
circumvent the last stage of the carry-save addition.

split the final fast carry-look ahead adder into 2 parts and insert two more
fast adders.

. normalize 4 results and add exponents.

. compute minimum and maximum.

6.

round 2 bounds and adjust exponents.

normalize 2 bounds again.

For details, again, see [3, 4].

100

References

[1] G. Alefeld, J. Herzberger: An Introduction to Interval Computations, Aca-
demic Press, New York, 1983

[2] T. Dufl: Interval Arithmetic and Recurswe Subdivision for Implicit Punc-
tions and Constructive Solid Geometry, Computer Graphics, 26,2, 1992,
pp 131-138

[3] R. Kolla, A. Vodopivec, J. Wolff v. Gudenberg: The TAX Architecture -
Interval Arithmetic Extension, Universitat Wiirzburg, Institut fur Infor-
matik, Techn. Report TR225, April 1999

[4] R. Kolla, A. Vodopivec, J. Wolff v. Gudenberg: Splitting Double Prect-
sion FPUs for Single Precision Interval Arithmetic, Proceedings of the
Workshop (Mikroprozessoren zur Jahrtausendwende: Gestaltungsalterna-
tiven zukiinftiger Prozessorarchitekturen), 15. GI/ITG-Fachtagung ARCS
99 Architektur von Rechensystemen 1999 - 1999, to appear

[5] U. Kulisch, W. L. Miranker: The Arithmetic of the Digital Computer: A
New Approach. SIAM Review, Vol. 28, No. 1, March 1986

[6] M. Lerch: fi_lib++, Universitat Wiirzburg, Institut fur Informatik, Techn,
Report, to appear

[7] M. Schulte et al: Hardware Units for Interval Multiplication, ANAIS Work-
shop, Recife Brasil, p. 85-87, 1996

[8] J. Snyder: Interval Analysis for Computer Graphics, Computer Graphics,
26,2, 1992, pp 121-130

[9] N. Stolte, R. Caubet: Comparison between Different Rasterization Methods
for Implicit Surfaces, in Rae Earnshaw, John A. Vince and How Jones
(eds), Visualization and Modeling, Chapter 10, pp 191-201, Academic
Press, 1997.

[10] A. Vodopivec: Entwurf einer Hardwareeinhert fir Intervallarithmetik, Uni-
versitat Wiirzburg, Institut fir Informatik, Diplomarbeit, 1998

[11] J Wolff v Gudenberg: Hardware Support for Interval Arithmetic, in Ale-
feld/ Frommer/ Lang (eds.) Scientific Computing and Validated Numerics,
Akademie Verlag, p. 32-37, 1996

101

	96
	97
	98
	99
	100
	101

