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Abstract: In many applications filters are required to satisfy certain amplitude
specifications as well as to approximate linear-phase and/or constant group delay in
the passband. This paper is dealing with the problem of digital filters design when
certain amplitude and phase specifications are prescribed. Comparative review of
existing design methods and criteria for synthesizing filters with simultaneously
magnitude and phase constraints is given. The problem under consideration has been
solved using different approximation methods for design of FIR and IIR filters. Several
aspects of these approaches are considered and compared. Also, some new results
concerning the design of recursive filters with constant group delay and Chebyshev
attenuation are presented.

I. INTRODUCTION

Designing recursive digital filters satisfying both arbitrary loss and delay
constraints is a classical problem. There is no known general analytical solution that
can yield coefficient values. A number of papers have appeared in technical literature
concerning the subject of linear-phase (or approximately linear-phase) digital filters.
This problem has been solved using different methods and approximation criteria.
Herewith presented paper gives a comprehensive review of such methods. In addition,
some new results are shown after generalization and extension of Unbehauen’s
approach [4,6].

II. DESCRIPTION OF THE PROBLEM AND REVIEW

The design of one-dimensional (1-D) IIR filters with both maximally flat and
Chebyshev group delay has been studied by Thiran and others [1, 2, 3]. In all these
cases, the magnitude response is monotonic and therefore not highly selective for a
given order. The work was extended to cover Chebyshev stopband attenuation by
Unbehauen [4, 5, 6] and by Maria and Fahmy [7]. Also, an optimization procedure has
been used to solve the problem by Deczky, Saramaki, Neuvo [8, 9]. This procedure
leads to equiripple magnitude and group delay with minimized number of
multiplications [9].
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It is well known that IIR filters satisfying the desired amplitude and phase
specifications can be designed in two parts [4, 10]: first, the denominator (ITIR
component) is determined to satisfy the phase requirements, than the IMIrTor-image or
antimirror-image numerator (linear-phase FIR component) is designed to achieve the
magnitude requirements of the filter. The same approach is used in [10, 11]. Other
investigations in this direction to design of different types of IIR filters (lowpass,
highpass, bandpass, and bandstop) are reported also in [12].

Thajchayapong [13, 14] extended the capability of the indirect technique to
provide the results equivalent to those of the direct techniques considered above. He
proved that using bilinear transformation and known methods in the s-analog domain,
1t 1s also possible to derive numerator polynomial with order larger than that of
denominator. This property was shown at first by Unbehauen [4].

New iterative least squares approach is given in [15, 16] based on the complex
Chebyshev technique in the frequency domain. An open problem here is the
convergence of the algorithm and stability of the resulting filter. The guarantee of
stability in the case of a general phase characteristic 1s a problem to be addressed in
the future. Other interesting methods are considered n [17, 18]. For example, Abo-
Zahhad [18] designed selective bandpass IIR filter nterpolating linear-phase and
constant group delay. This is done by approximating the phase characteristic to be
linear and its derivatives to be zero at a set of frequencies in the passband. As a result,
the passband amplitude characteristic is equiripple, the stopband loss characteristic is
maximally flat.

In recent years a variety of techniques for the design of two-dimensional (2-D)
IIR filters that approximate not only the prescribed magnitude response but also a
linear-phase characteristic have been developed [19-23]. Many applications in signal
processing require 2-D digital filters with circular, elliptical or fan shaped passband
magnitude response. It is more desirable to use IIR mstead of FIR filters in view of
computational efficiency and significant reduction in the number of multipliers. Several
authors pointed out that the phase of a 2-D IIR filter used for restoration of images is
an 1mportant factor. Among the commonly used approaches are these based on: (1) the
application of transformations of 1-D filter function to generate the corresponding 2-D
IIR filters, and (ii) use of H~ optimization theory and computer-aided optimization.
The first category includes the use of McClellan Transformation and DST (Digital
Spectral Transformation). It is known [24, 25, 26] that some DST preserve the group
delay response of the 1-D prototype filter when it is mapped to the 2-D plane. So, a
1-D IIR filter which has a maximally flat magnitude and simultaneously a constant
group delay response in its passband yields to a 2-D IR filter with the same kind of
magnitude and group delay response in the passband region [25]. Other different 2-D
methods are presented by Unbehauen ef al [19, 20], Ahmadi er al [21] for design of
2-D IIR separable-denominator (SP) digital filters
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III. APPROXIMATION TECHNIQUE
3.1 Constant group delay.

In this section it will be shown [4] how the problem of realizing a constant
group delay can be reduced to the task of rational approximation. We consider digital
all-pole filter with a transfer function:

m

H(z)= -

ag +az+.+a =
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m

where the coefficients a, have to be adjusted in such a way that the phase Qw),
O<aw=n/T, approaches a prescribed function 6h(w) as close as possible. An ideal phase
function @y (@) = 7. with constant group delay 7= const > 0. Here @ is the variable
radian frequency and 7 the time period of the digital filter.
Replacing @ with W=cos(w7/2), it was proved [4] :
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where -1 < I/ < 1. The left-hand function is approximating odd rational function Tu(W)
with parameters X2,_;. X2, and k introduced in [4]. After some calculations and

replacements we obtain the following function:
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which must be approximated by the function Jn(W). According to Perron [27]1 AW
can be represented by a continued fraction and its m-th convergent is
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It can be graphically determined
that increasing the order m, the
group delay becomes more flat in
the passband of the filter. From the
theory of continued fractions [27]
function & w) of the resulting H(z)
approaches the ideal phase (@) at
=0 in the maximally flat sense.

GROUP DELAY

Fig.1 Dependence of the group delay from

0 B3 ! L ? 25 3 degree m fi i %
FREQUENCY g or a lowpass filter with 7/7=1
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3.2. Equiripple magnitude condition.

In this section our task is to summarize and extend the approach given in [4]
with application of different squared-magnitude functions Q(6) [6]. We show that this
idea works not only for lowpass but also for highpass, bandpass, and bandstop filters.
For this purpose, the numerator of an all-pole transfer function will be substituted by a
mirror-image polynomial which does not affect the group delay and guarantees
equiripple magnitude in a prescribed stopband @, < w < 1t /T

- 1
O(z)= H(z)H(z ") = —— : 1
(a,+a,z +eta,z"Na,+a,z v a2

and after transformation W = (z + z7™)/2 we obtain:

o) = :

By+ByW +.+B,W"

., where O(e/*T) = ‘H(eja’T )(2.

Then, two transformations of the frequency are applied consecutively : W=a.w+ 4 and
w=({ +¢ )2, Parameters o and B are selected so that the interval in which the
squared-magnitude function must approximate a constant value in the equiripple sense,
is stretched into the range -1 <w <1 [28]. We apply two functions oK) [6]:

Cosern: 0= WABKOPAO | (0 o PHO-oORM
PHE)~PUO PO~ PLO)

where £ (<1) is a positive constant corresponding to the stopband ripple (Fig.2).

-1 0 I w

Fig.2 Squared-magnitude function O with equiripple behavior in the range [-1,1]

Lowpass stop|  pass Re

Case 2aa - 1w,

(-8).P3(O)
PY-PLO)
€.PyS)
PUO)-PAE)

68



Values of the parameters @ and /3 for lowpass and highpass filters are given in Tablel.
All necessary frequency mappings Z—>W—=>W—{ are graphically shown in [28].
Some graphical results from application of the method are shown in Fig.3 (highpass
filters).

Magnitude [dB]

Fig. 3. Case 2aa amplitude response with
m=3 and numerator degree 4
a) &0.1 and o.=n/2;
b) &0.07 and w.=n/2.6;

0 05 1 15 2 25 3 35 ¢) &0.05 and o.=n/3.8.
Frequency
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