Hardware Multiplier Design
- One Day from the Idea to the Implementation -

Dan NICULA, Florin SANDU, Carmen GERIGAN
Transilvania University, Department of Electronics & Computers
29 Eroilor, 2200 Bra2ov, ROMANIA
Tel.: +40-68-41.30.00 ext. 116, Email: nicula@vega.unitbv.ro

Abstract: This paper relates to the successful experience of implementing
a two complement 4 bit multiplier, based on Booth's algorithm. There was
necessary only one day to convert the idea into a hardware implementation. The
designer must had the Jollowing pre-requested knowledge: high level digital
design, VHDL modelling for synthesis, medium experience of using Electronic
Design Automation (EDA) software tools like: V-System, Cadence, XACT.

Keywords: High level design, VHDL synthesis, EDA tools, programmable
logic devices.

1. PROBLEM AND SOLUTION

The design cycle of complex hardware is getting shorter and shorter.
Nowadays, the major objectives in VLSI design are: the design quality and the
designer’s productivity. How could these objectives be reached in the same time?

Using modern EDA software tools, it is possible to design and to test a
medium complexity system during only one day. To do this, a top-down
methodology has to be used. A key point of this approach is a Hardware
Description Language (HDL) capable to offer support at all levels of description
(behavioural, structural, physical).

Figure 1 illustrates this integrated design flow that reduces the amount of
code that has to be maintained and the risk of inconsistencies between different
models.

2. BLOCK SCHEMATIC

The Booth's multiplication algorithm is described in [3]. This algorithm is
suitable for multiplication of numbers coded in two's complement and has the
advantage of its simplicity. Figure 2 illustrates a data-path that implements
multiplication algorithm together with a control-path (implemented like a
synchronous Finite State Machine - FSM).

111

Y.

Target Behavioural
Library Description
b VHDL

Top level design Hardware
Synthesys

Structural
. Description
VHDL

Implementation

Production Digital System
***************** Ready e

Figure 1. Top-down design flow.

3. VHDL MODELLING AND SIMULATION

The quality of the design depends of the designer’s modelling style. The
synthesised logic is directly inferred from the structure of the hardware description.

The behavioural VHDL code was developed started from an algorithmic
description of multiplication. The VHDL code has generic dimensions for operands,
providing a very convenient way for extending the data-path dimensions.

The multiplier is decomposed in two parts: data path and control path.
Data path is modelled using many processes. All registers receive the global
asynchronous reset and the global clock. Control path is modelled like an explicit
FSM as stated in [4].

112

Op. 1 Op. 2

Control Path
@iplier oL 515 £ mmmemie o = s il
[

start
A multiplication

Counter | [..............

el
multiplication
L 5 Cimmmis o s it N ready

Result
Figure 2. Data Path and Control Path of Booth's multiplier.

Modelling strategy follows the rules in [4]. Data type std logic, declared in
the /EEE package std logic 1164 was used. All units used only arithmetic
operators declared in JEEE package std logic arith.

The behavioural simulation has been carried out on a PC, using
V-System/Windows. The structural simulation (post synthesis) has been carried
out on a workstation, using Leapfrog from Cadence.

4. SYNTHESIS

The high level architect’s goal is to write a sufficiently detailed behavioural
model of the system so as to be able to use a software tool for synthesis. Before
synthesis, the model is technology independent. The synthesis process is very
strong technology dependent. After synthesis, for programmable devices, an
automated "place and route" process will follow.

The behavioural VHDL model of multiplier has been synthesised using
Synergy from Cadence on a XILINX/FPGA target library.

Making a constrain regarding preserving the boundaries allows a better
control of logic structure generated for a specific block.

The cost report generated by software shows that the area devoted to
Control Path is only the half from the area devoted to Data Path. Tt must be
mentioned that the Control Path is not dependent by the operand dimension.

The following page presents the cost report as it was generated after
synthesis.

113

MODULE: Work.MUL.STRUCTURAL_SYN

Subtotal 0 0.00
Area Area
Sub-modules Count each total
Work.DATA_PATH.BEHAVE;SYN . 1 70.00 70.00
Work.CONTROL_PATH.BEHAVE_SYN 1 32.00 32.00
Subtotal 2 102.00
Total 139 102.00
Block Summary:
No block
MODULE: Work.CONTROL_PATH.BEHAVE SYN
Area Area
Cell Count each total
xvee 1 *x *x
inv 14 0.00 0.00
fdpe 1 1.00 1.00
oréd 1 1.00 1.00
ox3 2 1.00 2.00
and3 2 1.00 2.00
nor2 3 1.00 3.00
and2 3 1.00 3.00
or2 9 1.00 9.00
fdce 11 1.00 11.00
Total 47 32.00
MODULE : Work.DATA_PATH.BEHAVE_SYN
Area Area
Cell Count each total
xgnd i *k * %
buff b & 0.00 0.00
inv 28 0.00 0.00
or2 2 1.00 2.00
nand2 3 1.00 3.00
m2_le 3 1.00 3.00
ord 3 1.00 3.00
fdce 4 1.00 4.00
or3 9 1.00 9.00
fde 9 1.00 9.00
add4 2 5.00 10.00
and2 11 1.00 11.00
nor2 16 1.00 16.00
Total 92 70.00

114

5. ROUTING FPGA

Started from the structural description of the multiplier (gates and
flip-flops), the next step is to implement the design into a programmable device.

The design flow has three stages.

* Design Entry. In this case, the design was imported directly from
Cadence to XNF file format.

 Design Implementation. During this stage the logic is mapped onto the
target device architecture. The designer controls the implementation process
through a constrains file. During the place and route process, several report files
are generated. The reports contain information about the number of CLB used for
implementation and timing information.

PLACEMENT RESULTS FOR DESIGN MULTIPLIER
Partitioned Design Utilisation Using Part 4003APC84-6

No. Max. %$Used
Used |Available
Occupied CLBs 37 100 37%
Bonded I/0 Pins 20 61 32%
F and G Function Generators (*) 55 200 27%
H Function Generators 12 100 12%
CLB Flip Flops 20 200 10%
IOB Input Flip Flops 0 80 0%
IOB Output Flip Flops 0 80 0%
3-State Buffers 0 240 0%
3-State Half Long Lines 0 40 0%
Edge Decode Inputs 0 120 0%
Edge Decode Half Long Lines 0 16 0%
CLB Fast Carry Logic 6 100 6%
CPU Times
CPU time taken for Partition: 0O hrs O mins 17 secs
CPU time taken for Placement: 0 hrs 3 mins 54 secs

========== End of Report =========
ROUTING RESULTS FOR DESIGN MULTIPLIER
Routing Summary

Number of unrouted connections : 0
CPU time taken for Routing O hrs 1 mins 31 secs
========== End of Report ==========

It is to be noticed that the entire process (partition, place and route) takes
only 5 minutes and 42 seconds.

* Design Verification. The FPGA can be verified immediately in the
target application board, after it is programmed in circuit using the download
cable.

115

6. IMPLEMENTING A 8 X 8 BIT MULTIPLIER

The VHDL code was written with reusability in mind. This means that
VHDL code for this project has several properties:
eprocess and technology independent: in order to be implemented in FPGA
or different silicon technologies;
esoftware tool independent: in order to be used by different CAD
environments;
euser independent: it is easy to understand and modify.

The following table presents the necessary time for another multiplier
development (8 x 8 bit) using the same VHDL code.

Modification l Code | Verification | User time | Execution time
VHDL 30s 2 min 10 min 1 min
Synthesis - 20 min 10 min 15 min
Netlisting & Constraints - - 10 min 1 min
Place & Route - - - S min
Total Time 30s 22 min 30 min 22 min

It means that 75 minutes are enough to implement a NxN bit multiplier.
This time includes verification (simulation), user time (setting constraints for.
synthesis and netlist, opening CAE tools, import and export project), and
execution time (computer time).

7. CONCLUSIONS

For an experienced designer, using EDA tools, it is possible to drastically
shorten the design cycle of hardware design. We proved that a medium
experienced graduated student is able to fulfil an assignment during only one
working day. This very short design and implementing cycle it is possible due to
making use of top-down design methodology, having support of EDA tools and
implementing the hardware on a pre-manufactured demonstration board.

8. REFERENCES

[1] Toac°e G., Nicula D.: Electronica Digitala (Digital Electronics),
Teora, Bucharest, Romania, 1996

[2] *** The Programmable Logic Data Book, XILINX 1994

[3] Patterson D.A_, Hennessy J.L., Computer Organization and Design
The Hardware/Software Interface, Morgan Kaufinann, 1994

[4] * * *: Synergy VHDL Synthesizer and Optimizer Modeling Style
Guide 1.2.1, Cadence on-line documentation

116

	111
	112
	113
	114
	115
	116

