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1 Summary

This paper deals with recent developments in static and dynamic translinear (TL) circuits.
First a review of the basic theory of traditional TL circuits is given, followed by some
recent MOST TL circuits, where the back gate is employed as an extra signal terminal.
Then, the recently found basic theory of dynamic TL circuits, together with an
analysis/synthesis method is presented. Finally, a few examples at circuit-level will be
given.

11 Introduction: static translinear circuits

1I-1 Short historical review

About the term “translinear”

Early translinear circuits were strictly based on the remarkable fact that the
transconductance of a BJT is linearly proportional to its collector current. This fact is a
consequence of the logarithmic relation between [ and V.

Ve =V In{lc / I5(T)} (1-1)
from which it follows :
aC [C
=8n=35 (1_2)
6VBE VT

This is the key to the strictly translinear principle and, basically, only devices showing a
very exact logarithmic relation are suitable. As MOSTs operating in weak inversion show
a comparable relation between the gate-source voltage and the drain current, they are
suitable too for application of the strictly translinear principle.

A general property of a TL circuit is that it contains one or more closed loops of emitter-
base junctions (gate-source junctions) with a voltage-current relation according to (1-1).
However, over time the term “translinear”” has come to refer to a wider class of circuits,
for some “translinear” circuits contain MOSTs in strong inversion, whose Vgs-Id relation
is quadratic instead of exponential, whereas the other properties (the presence of loops of
gate-source junctions and/or the intentional use of the Vgs-Id relations) are maintained.

11-2 Generadl classification of translinear circuits within the world of analog circuits
To begin with we consider a closed loop of junctions. We assume that all junctions (which
can be diodes or the input ports of transistors) are forward-biased with external circuitry.
Other boundary conditions are that the loop must contain an even number of junctions (at
least two) and that there are an equal number of junctions clockwise facing and
counterclockwise facing (shorted CW and CCW).

If the forward voltage of each junction (1, 2,3, . .. .n) is Vp,, it follows

=0 (1-3)

k=1
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If we assume that Vr is device-independent and the collector current density (drain current
per square) of any device is J, we easily derive [1]
[[/=I1s (1-4)
cw ccw
Equation (1-4) gives the ultimate translinear principle, in words (Gilbert [1]):
In a closed loop containing an even number of forward biased junctions, arranged so
that there are an equal number of clockwise facing and counterclockwise facing
polarities, the product of the current densities in the clockwise direction is equal to the
product of the current densities in the counterclockwise direction.
(For MOSTs in weak inversion the words “current densities” have to be replaced by

“drain currents per square”). ) ]
A special class of analog electronics that has attracted much interest during the last few

decades is the design of low-power/low-voltage circuits. In this class we observe a revival
of some types of translinear circuits. This is mainly because the current-mode operation of
translinear circuits perfectly fits with low-voltage operation, whereas low-power operation
generally implies that the system bandwidth is restricted. (Note, that the low-frequency
area is the most powerful operation area of TL circuits). For all traditional (static) TL-
circuits we refer to literature [2]

11-3 Suitable semiconductor components

If we only consider circuits operating according to the strict translinear principle (Eq. 1-
4), we must resort to devices with a perfectly exponential transfer. BJTs fulfill this
requirement within a very large collector current range. Other suitable devices for the
strictly translinear principle are MOSTs operating in weak inversion. If the strictly
translinear principle is no longer maintained, MOSTs operating in moderate/strong
inversion are also suitable.

Il Analysis and synthesis methods for static translinear circuits

1II-1 Analysis

The currents that play a role in any true static translinear circuit are the collector (drain)
currents of the transistors, the biasing currents and the in-and output signal currents,
Hence, analysis of TL circuits comes down to a description of all independent KCLs and
all loop equations according to (1-4) followed by elimination of the undesired variables.
11I-2 Synthesis of static TL circuits; the heuristic approach versus the systematic
approach.

III-2-1 The heuristic approach

The term “heuristics” literally means “method of solving problems by inductive reasoning,
by evaluating past experience and moving by trial and error to a solution”. The first design
approaches of most known electronic circuits were done in this way and, consequently,
generally only experienced engineers are able to find new solutions by using this approach.
1I-2-2 The systematic approach '

A systematic design system must contain a set of generally valuable, structured design
rules. These rules must be structured in a hierarchical way, so that, from a restricted set of
suitable basic configurations, all possible solutions to a preliminarily stated problem are
generated. The approach has successfully been applied to the design of amplifiers with
overall feedback and also to translinear circuits. The advantages of this approach are
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twofold. First, a well-structured design system can be used by designers without
specialized talent or experience. Second, it generally generates more (and sometimes
better) solutions to the same problem than would have been found by heuristic designing.
However, systematic design systems have some serious drawbacks too. Generally, the
solutions generated by such systems preferably must be selected by an experienced
designer, first because not all solutions are practically appreciable and second because
some solutions don’t work at all. The last phenomenon is because the system generally is
not able to process all electrical properties. As an example: in synthesis systems for
translinear circuits some resulting circuits may show positive feedback loops (possibly
resulting in oscillation or latching) because the system is not able to recognize this item.

II-3 Interaction between the heuristic and the systematic approaches

The development of systematic design systems has always been the result or continuation

of much work carried out in a heuristic way. They are valuable to generalize and complete

the heuristically found solutions. Therefore, the importance of heuristic reasoning should

never be depreciated. However, new, systematically found solutions can deliver new

impulse and fresh understanding to the heuristically reasoning designer. Almost all

traditional static TL circuits have been heuristically found. Examples are current mirrors,

analog multipliers/dividers geometric mean circuits, “minimax’ circuits, rms-dc

converters, and various circuits for (other) nonlinear signal processing [2]. Examples of

systematically found static TL circuits can be found in [3].

WI-4 Systematic synthesis methods for static TL circuits

1I-4-1 Introduction

Because TL-circuits show common topological properties, they invite a systematic

synthesis approach. Seevinck [4] has carried out extensive research into the analysis and

synthesis of TL circuits with bipolar transistors of the same polarity. The synthesis method

is restricted to TL-structures with < 10 branches and one or two loops. Thus, all possible

topologies of TL-circuits with the restrictions mentioned and with a number of prescribed

transfer functions can be synthesized. However, it is surprising that nearly all fruitful and

promising topologies found, have earlier been found with heuristical methods. But this is

not true in all cases.

As the methods are mainly based on network-theoretical and mathematical grounds, an

extensive treatment lies beyond the scope of this book. Therefore we confine ourselves to

a brief outline in Section IV-2 and refer to literature for details [4]. Further, an example of

a useful TL-circuit obtained by synthesis, that was not found earlier, will be shown (See

Section VIII).

I1-4-2 The Seevinck synthesis method for bipolar semiconductor devices.

The general aim is the design of static TL networks realizing a prescribed (non)linear,

time-invariant transfer function. The strategy shows some similarity with traditional

synthesis methods for passive networks. The synthesis procedure can be divided into four

general steps:

1. Approximation of the prescribed function by suitable algebraic formulations

2. Decomposition of the algebraic formulations found into fosuitable for TL realization

3. Realization of networks, based on topological properties of those TL networks, which
fit with the forms found in 2).
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4. Selection of the networks found as to their complexity, cost, stability, sensitivity to
parameter tolerances, etc.
The parts 1. through 3. will briefly be explained now.
1. Function approximation
Only algebraic functions are suitable, of which rational functions need special attention,
because they provide greater precision than polynomials of the same degree. Hence, non-
algebraic functions need to be approximated by algebraic functions. As an example, a
pretty accurate approximation of a sine function is given below
3

sin 72X s%,forlxm @
2. Function decomposition
For synthesis purposes it is convenient to write the TL relation (1-4) in a slightly different
form. Say that a TL loop has N elements (branches), numbered from 1 to N with branch
currents I; through Iy, divided into odd and even ones, and with device areas A, through
Ay, then (1-4) can be written as

NI2 N2 N/2 A’2
[1%. =A] [ 1, where A= HAQ—" (2-2)
n=1 n=1 n=1 n—-1

Any TL network has one or more input currents Iy, and output currents I, ,.. Further,
every branch current I, through Iy can be expressed in linear combinations of the input and
output currents.

Generally, if the expressions of the branch currents into the input and output currents are
called f; through f, application of (2-2) yields

VAR STIRIACSPI ST RSRLY A (SN AP (ST SPep R (2-3)

Hence, function decomposition means that the prescribed function (approximation) is
“translated” into forms according to (2-3).
Note: As all functions f; through fy represent currents in TL elements, they must remain
positive for all (positive and negative) values of the input and output currents. This must
be checked after decomposition.
Many decomposition techniques are known in mathematics. Suitable techniques for TL
synthesis are those using explicit forms; implicit forms; parametric forms; rational
Sfunctions; continual fractions, etc. Generally, each of them is suitable for a class of
function approximations. As an example we give the implicit decomposition of the sine
function of (2-1)
l+z+x  (1+x)°
1-z-x (1-x)°
where z is the output signal. For further details we resort to referring to literature [3].
3. Network realization techniques
An arbitrary TL network always contains one or more (interwoven) TL loops with
minimally four branches. If the branch currents and node voltages are left out of
consideration and if, besides, every TL element is symbolized by a line, the result is the so-
called undirected graph of the TL network. Every graph represents a class of TL
networks. Of course, the number of branches (=TL elements) is theoretically unlimited.

2-9
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However, due to practical parameter tolerances it has been shown to be senseless to
construct TL networks with more than 9 branches and/or more than 2 loops. This
limitation results in maximally 6 different graphs. Any graph can more precisely be
characterized by numbering its nodes and choosing the direction of the branch currents.
Then every graph has a corresponding node-branch incidence matrix (the T matrix).
The total number of different T matrices corresponding to the 6 graphs amounts to 26. To
date, the connections of the in- and output currents and the values and connections of
biasing currents have not yet been chosen. Hence, it will be clear that any T matrix
generally results in a great numbér of possible TL networks. Checking them all would be
possible, but this immense job would be entirely a matter of analysis, and give hardly any
insight. To make a real synthesis of TL circuits feasible, the possible general function
structure of the relations between the branch currents that can be realized by any graph,
has to be investigated.

Now the synthesis procedure is as follows. First, the (approximation of the) desired
function is decomposed in one or more ways, so that the results fit with one (or more) of
the general function structures according to a suitable graph. Second, all possible T
matrices are derived from the (directed) graphs. Third, all possible TL networks are
derived from the T matrices. Finally, the resulting networks are checked and selected on
feasibility and quality. It will be clear that with all 26 T matrices the realization of
numerous different TL networks providing many (approximated) transfers is feasible [3].

IV Recent TL circuits with MOST's (weak inversion) with back gate control
A simple model for the drain current of a MOST in saturation and in weak inversion as a
function of the gate-source and bulk-source voltages (V; and Vi) is

I = I,e"os/¥0r 1= Vss [Ur (@4-1)

where Uy = kT/q is the thermal voltage and K is the subthreshold slope. An interesting
property is gained, if V55 and V are driven with the same source signal V. From (4-1) it
appears, that in that case the V /1, slope becomes 60mV / decadei.e. the same as with a
bipolar transistor. A useful application is shown in Fig. 4-1b: the so-called bulk current

mirror [6]. Here the forward- and back gate voltages are connected with a level shxft iic:
the source follower M; in Fig.4-1b. .

Fig.4-1a,b Conventional MOST current mirror (left) versus bulk current mirror ( right)
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Fig4-2 Measured input voltages of the conventional current mirror (solid) and the bulk

mirror {(dashed)
In Fig. 4-2 its measured input voltage as a function of its input current is compared with
that of the conventional mirror, shown in Fig. 4-1a. Indeed, we observe a slope of
60mV | decade . Another application of the back gate is gained if, apart from gate-source
Ioops, the bulk-source junctions are employed in separate TL loops. In other words, the
MOSTs are used as true four terminal devices. If both types of loops are used in one TL
circuit, it is feasible to realize more complicated functions with a given number of devices -
than with three terminal devices [6]. Fig. 4-3a depicts an example of such a structure,
having two interwoven bulk-source loops and one gate-source loop.
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Fig.4-3a, TL structure including bulk loops; Fig.4-3b, Measured output current.

Applying (4-1) and (1-4) for all loops, yields
N
o, B

This equation structure exactly fits with the decomposed sine function of (2-4). Hence,

the loop structure in Fig. 4-3a is suitable for a TL realization of the sine function (2-4).
Fig. 4-3b depicts the measured transfer.

@2)
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A mayor drawback of back gate control is that the device becomes slow, so that its
application is limited to low frequencies.

V Dynamic translinear circuits

V-1 Introduction

A . brandnew field in the area of the translinear circuits are the dynamic translinear

circuits. There is a growing interest in such circuits implying linear filters, oscillators,

PLLs, etc. owing to a few special general properties. If we confine ourselves to filter

circuits these properties are :

o They are inherenly instantaneously signal companding, so that larger dynamic ranges
can be realized (with given supply voltage and capacitor values) than with traditional
filters without the addition of intermodulation distortion. Distortion free syllabic
companding is also possible with this type of filters [7].

e Their connections with the outside world, i.e. other electronic circuitry, are inherenly
at current level. This property makes them very suitable for low-voltage electronics,

V-2 Basic principle

lcapl

Fig.5-1 a): Simplest loop including a capacitor; b): general case

The most simple partial circuit, and also the key of the principle of dynamic TL circuits, is

shown in Fig. 5-1a, where the following relation yields

CU; %I—C =1Icl, (5-1)
t

Note that the left hand side of these equation is part of a differential equation and the right

hand part is part of a polynomial, only containing currents. The principle can be

generalized according to Fig. 5-1b, where

./ ,.
I, = CUTZi—@ (5-2)
i Ci

Due to the differentiation, V., in Figs 5-1a,b may have an arbitrary value.

Hence, apart from traditional TL loops, containing an equal number of CW and CCW
junctions, a dynamic TL circuit may also contain loops including a capacitor and an
arbifrary number of CW and/or CCW junctions. Another difference between both types
of loops is that traditional TL loops only contain collector currents, but that loops
including capacitors also contain capacitor currents.
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V1 Analysis of dynamic TL circuits

Although a few examples of analysis methods are known from literature [41, the method
presented here exclusively uses TL loop equations and consequently is very obvious and
flexible. The method is represented schematically in Fig. 6 illustrated with an example: the
analysis of a second order filter, known from literature, i.e. a second-order low-pass filter,

INPUT: detailed circuit diagram

" Step 3

Two loops containing the capacitor voltages

@ Cy-Q,- Qg
i
oy = C4 (zuT)%
o _ equations
® Cp-Q3-Q4-Q,-Qq: | " Set2

lo
1 tow
lop = CalPU T + 1)

Step 4
Step 1
Tleloops:  Qq-Qy-Q,y-Q,-Q,-Qy =
Llgl =l lg
Q3-Q,-Q5-Qg=
lyle=%1,15 (Qg double area)

Substitutions:

oo , and ic1 (from @) substituted into ®
Result: explicit expression for ICZ

KCLs at + Substitution of I, and Ig,, into ® and @

terminal C's: 1, + 15 = IC2

|

Result: two equations with two unknowns: lpand |,
Step 2 a=loy o

* Elimination of 1, yields

Substitution external currents: o T p ==
C4Cy(2Uy) lout + (G2 - C1)(2UT)lo'out + 1y Iout = luzlln

ly=1lip

lg=1 Normalization:

Is=1 2U,C 2U-C.

Lo ; Substitute C,'= —-1 and G, = —1-2
L 7= : ’ ‘o o

]8 = ‘oul

GGy lowt +(C2'- C1‘)Iout +lout = i

Resulting equations:

Laplace:
2
O iy lo°= I2“(:1 * lolout equations i{hﬂ _ 1
= Set1 lin ¥ 7 s2C,C, +8(C, - Cy) + 1
@ 2 12=(g, + )+ - 1c,) n 102 +8(Cy - Cy) +
Frequency transfer s = jo; Butterworth if
!
Transfer 22 has 4 unknowns: ou R
I ] (@) 5
in QD o g
!out' [C1’ I(.7;:_’ l2 (l)°2 _l (Do

Fig. 6, lllustration of the analysis procedure for dynamic TL circuits
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VII Synthesis of dynamic TL circuits
Starting with the dimension free-differential equation (DE) of the desired electric behavior
" of the circuit to design, the DE is converted into one at current level and in the time
domain, by suitable dimension transforms. Then the derivatives of the DE are replaced by
parts of polynomials in the current domain, with the aid of equation structures like (5-1)
and (5-2). The next step is decomposition of the resulting polynomial into suitable TL
loop equations. A systematic method for steps 3 and 4 is not yet completed. Basically the
decomposition method, discussed in Section 2 could also be used for decomposition of
equations for dynamic TL circuits. However, due to the capacitor currents this is much
more complicated than with equations for static TL circuits, so that a suitable
decomposition is often hard to find. Research is going on, employing methods of the
symbolic algebra and will be published in the foreseeable future. The final step is the
construction of a TL version on transistor-level with the loop equations found. Fig. 7
depicts an example: With a dimension free DE of a second-order low-pass Butterworth
transfer as the input, a circuit at ransistor level of such a filter is derived.

INPUT: Dimensionless DE: Step 2: Definition capacitor currents:
3+V2i+z=x

output input From Analysis

zand Z: dimensionless "time" derivatives: we know
. 9 s 92
z=37 and z 32
Step 1: Add Dimensions:
! I 2 capacitors needed

courent:  x=4% z=-J%
o o i
5 2CU; ; . 18! capagcitor current lo;=CUr ™| ©
« time: - = . = out
¥ gL lo ai l
~
dimension [s] 1
out'Cq
out = T CU.
RESULT: Current-mode DE:
2(;2UT2'|'Wl + ZCUT‘oioui 120, =12, Substitution of ® and @ into the
current mode DE reduces its order by one!
lou{@CUrlg, + 21g,2 + 2lg 1o + 12 = I; 12 ®
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Step 2: Continued

1
nd ' - _ Gt
2" capacitor current lg, = lg, +CUy e 5 6]

|

not needed tunability
but
practically
attractive

Substitution derivation of fc ¥ from @, and
substitution into @ yields

lout(@loyle, + 2lgyly + 1,2k 11,2 ®

® is the desired current-mode polynomial without
derivatives

Step 3: TL-Decomposition

OBJECTIVE:
Conversion of the current-mede polynomial into
TL-loop equations
Techniques: same as with static TL-circuits
but
- more complex polynomials = more difficult
= in nearly all cases } _, parametric decomposition
more than one loop necessary
=+ subjeci oi preseni researci
development of software using
l methods of symbolic algebra
In simple cases heuristic solutions possible
In the present example (2"¢ order Butterworth
low-pass filter)

lou@leqlop + 2leyle *+ 167 = lnly?  (polynomial)

f !

}
{210‘],(101 +1)P =112
2(P - lg Mg, +1o) - 1,2

P = intermediate current

(TL-loop equations)

Step 4: Composition circuit

(Just one heuristically found solution)

Loops

Step 5:

* Q, through Qg
* Q; through Q4

Replace ideal bias sources by realistic ones

Fig. 7, Illustration of the synthesis procedure for dynamic TL circuits
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VIII TL oscillator
An example of a current-controlled oscillator, built up from two identical TL integrators

is discussed below.

x(t)

Fig. 8-1, Generic block diagram of a two integrator oscillator.

Fig. 8-1 depicts the block diagram, consisting of two integrators with unity feedback and
some amplitude stabilizing function F(x). Its output signal is x(¢). The circuit
implements the second-order DE

() + 2a0() + w*x(t) = F(x(t)) (8-1)
A suitable form for F(x) is

2Gx
F(x)= m with G >1 (8-2)
Substitution of (7-2) into (7-1) yields
5 1= x2 (t) . 2 : _
X(t) + w(Z =26 A+ 20 Jx(t) +w°x(t)=0 (8-3)

where the dot represents differentiation to time. In the stable oscillation mode the term
between the large brackets in (8-1) vanishes and the DE reduces to its original form
M) +ox(@)=0 (8-4)

+ +
Io} E'nﬂom Cdv/dt+I|g
‘ I

Fig 8-2 Seevinck's TL integrator.
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The basic circuit of one of the TL integrators is shown in Fig. 8-2 and was first proposed
by Seevinck [5]. The function F(¢)can easily be implemented by a static translinear circuit

[2]. Finally, Fig. 8-3 depicts the complete circuit diagram (with ideal biasing sources).

Fig. 8-3, Complete circuit diagram of the oscillator.
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