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I. INTRODUCTION

The exact analysis of any electronic device must be in compliance with the five basic
semiconductor equations which, for steady-state conditions and one-dimensional geometry,
read: -
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where g is the generation rate, R is the recombination rate and p, and 7, are the equilibrium
hole and electron concentrations. The basic characteristics of the unijunction transistor (UJIT)
can be obtained if these equations are applied to its EB region, Fig.1.

To simplify matters, one usually assumes that in this region there is approximate space-
charge neutrality, that is dnw/dx=dp/dx and n-n,= p-p,. This, when applied to (1) and (2),
and J, and J,, are replaced by /,/4 and (Ip; - I, )/A =1,/A, respectively, yields [1]:

d_p= plgp -1, p(b+1)+b(no -poﬂ
dx eprA(Zp +n,-p,)

©®
and
Iy —eD,A(b—1)dp / dx
F= £
ep, Alp(b +1) +b(n, - p,)]

where b=14,/14,. These two relations, together with equation (3), which could be rewritten in
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Fig. 1 Schematic diagram of a unijunction transistor

terms of 1, as:
C—ﬂi=e(g—R)A, ®
dx
and with the well known expression for the voltage across the p# junction:

-L
g =y ln B ®

form a relatively precise, but very complicated, model for calculation of the steady-state
characteristics of the UJT. :

For instance, the procedure of calculating one point of the Vg-Ig characteristic, i.e., of
finding Vg for given /g, is the following. We note - since g - R is a known function of p -
that relations (6) and (8) compose a system of two simultaneous differential equations of p(x)
and J,(x). They can be solved numerically for the corresponding initial conditions and an
assumed value of /p;. The hole current is negligible in the EB, region; thus, we have [, (-L) =
71g, where yis the emitter efficiency. Also, we can write [, (0) = es4/p(0) - p,/, where s is
the recombination velocity of the B; contact. All we know about /p; is that it must satisfy the
equation:

Vag =V

20

Ig=Ip +1gy =Iz+ (10)
(Ryq is the resistance of the EB, region!), but its exact value cannot be known until we find
the potential J/. Once the required solution p(%) is obtained, we can use (7) to calculate an
estimate of V, by integrating /" from -L to 0. This }/ will be correct if and only if it satisfies
(10) for the assumed value of /). Normally, we will have to repeat the calculation several
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times, each time assuming a new, more correct, value for Ip1 until we obtain a satisfactorily
precise value for /. Having the correct Vand, therefore, the correct p(X), we can finally
calculate the emitter voltage:

Ve=V+¢g (11)

Obviously, because of the complexity of the equations (6), (8) and (7), no exact
analytical description of the steady-state characteristics of the UJT is possible. This is also
true, of course, for its transient behavior. For many applications, however, even an
approximate analytical description of the UJT could be useful. The development of such a
model is the main concern of this paper.

II. STEADY- STATE MODEL
To simplify expression (6), we assume that no recombination is present within the EB;
region. This implies:

I, =ylg = const. (12)

Next, we will replace plg; by pylg, ignoring the influence of the term
p[(] - )/)] g+ 1 BZ] on the distribution p(x), what is obviously true for larger values of Is.
This reduces expression (6) to:
ap _ ~yIy p+n,-p,
dc eD,A2p+n,-p,

(13)

Since in most cases the recombination velocity at the contact By is very high, we will further
assume that § —> 0. This implies p(0) = p,, .

The differential equation (13) is nonlinear and cannot be solved analytically in closed
form. We note, however, that dp/dx is a monotone function of x, which, when the condition
p(0) = p, is applied, becomes approximately equal to —y/y /eD,4 at x=0and

approaches —y /gy /2eD,A at x —> - . Therefore, the distribution:
y1g :

F= eD, 4 9
will be a very good approximation of the exact solution of equation (13).

Combining (7) with (10) and (14), one obtains:

0
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In the last expression, Ur =D,/ p,=kT'/e and Ryg=L/ EA(nmun + pmup)

(Ryq is the resistance of the EB; region !). Note that Ry reduces to Ry for /g = 0.
From (9) and (14) it follows:

[’LOb + 1) vl
P,

Ur

RlO

¢ =Upln|1+ (16)

Expressions (15) and (16), together with (10) and (11), form the required analytical
steady-state model of the UJT.

A presentation of the V5-Ig characteristics of our model is given in Fig. 2. We have
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Fig. 2 Vg-Ig characteristics of the developed model. Rgp=Rio+Ro0=8 kQ,
7=R10/Rpp=0.6, Np= 107 cm'3, ¥=0.99 and b=2.8. We assume silicon
semiconductor and room temperature (7=298 K).
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compared these characteristics with the measured characteristics of a real UIT of the same
values of Rpp and 77 [2] and a very good conformity was found.

At the peak and the valley points, the slope of the Vz-/ characteristics
vy, ldly =dV/dl; +ddy /dl; =0. So, the currents /g, and /g, corresponding to these
points, are solutions of the equation: '

dR dR
RoVgs Ri(Ry + Ry) + Ryy -1
———LE 4+ (yh+1-y)Ry dg Ur =0
2 2 /
(R, + Ry) (R +Ry) Ur /Ry +1,
[n—”b + 1)
P,
a”n
where
J b+ 1yl
ar ___Ur 21n(1+( +/)7 Ej+ Ur/lg (17)
dlg  (b+1)ylg Ur/Ry Ur /R +(b+ )yl
To find a simple expression for /z, we will assume:
./ Ir/
Ur/Ry <<, << Tr/ By a18)
" > b+ 1)y
—Zb+1ly
Do
This allows to neglect U, / Ry (ﬁ”—b + 1) ¥ with respect to / g and to use the
Po
approximations:
Rio(b+1)y
R =R, = Ry; dR, [dl 5 = dR, |dl SES
[1g =0 1, =0 Uy
what reduces (17) to a simple linear equation. The expression obtained is:
U, (}517 + RL)
]Ep - 10 20 (19)

Vs

B (b +1)y —(by +1-7)

Ur

Obviously, this result is correct since it satisfies (18) for all cases of practical interest.

At the valley point, the emitter current is relatively large, so we can assume:
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For all practicable values of 77, this implies R;<<Ryg . So, by neglecting R with respect to
Ry and having in mind (20), we can reduce (17) to the following simple transcendental

equation:
Ip= Vs ln(b+1)7’1E _1
Ryo(267 +1) Uz /Ry

Iy, >>

(20)

@n

To obtain an explicit expression for /g, we will replace [ on the right side of (21) by a
constant of the same order of magnitude as I, . Such a constant could be the value of /g at
which both terms of V (equation (15)) become identical. Since this occurs at

Iy = VBB/(b}/ +1- V)Rzo , we have:
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G I—_— 22
BT Ry(2by +1)| Uy 1-nby +1-y @

ITI. TRANSIENT MODEL

Expression (14) indicates a linear relationship between the emitter current /g and the
excess hole charge in the EB, region, O,. Namely:

r-L)-p, 2D,0
ylp =g ( 2 D,A= L"Zp (23)
So relations (15) and (16) can be easily expressed in terms of O, as follows:
2D
Lok, Rk PZQP (b . 1j (24)
R+Ry R +Ry L b4
2D
. (b+1) 222
R = I Inl+ L (24)
: ZDPQP Ur
(b 1)* 2
Ry,
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In steady-state conditions the hole current is independent of x, thus one can write:
i, (—L) —i p(O) = 0. In dynamic conditions, however, i (- L) differs from p (0) by the rate
the excess hole charge cumulates in the EB, region (remember that we ignore
recombination!).
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Fig. 3 Temperature dependence of the }/z-I5 characteristics of the developed model.

Ve=10 V and Rgz=8 k) (at room temperature). The other parameters are the
same as in Fig. 2.

Thus:
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do

) . _ %

(-0)=1,(0) =22

Replacing ip(-L) by y ip and i, (0) by 2D,0, / I? (in analogy with the charge control

approach in the bipolar transistors), we obtain the following simple differential equation:
GOpo 9 _

dat */ 2Dp

(26)

7 iz @D

Equation (27) and expressions (24) and (25), together with (11) and (10), complete
the required simple transient model of the UJT. Here we have implicitly assumed that
expressions (24) and (25) hold not only in steady-state but also in dynamic conditions, which
is equivalent to assuming that the distribution p(x) depends only on Q,, and not on the
previous history. Obviously, the higher the rate of change of the emitter current the less true
will be this assumption.

IV. TEMPERATURE DEPENDENCE

The temperature dependence is easily incorporated by using the well known expressions:
- 5 512
n? =Cre ™ and u= ,Ltn(To / T) 2 (or: R=R, /(T/ 7:,)3 ). As can be seen
from Fig. 3, the voltage temperature coefficient ¢ , =0V /T of our model is negative

and becomes smaller at larger currents. This is in good agreement with the experiments
referred in [2]. There is a certain disagreement, though, in the saturation region, where the

experimental ¢, assumes small positive values for larger currents.

V. CONCLUSION

. The developed model of the UJT is general and complete. Although simple, it
describes satisfactorily well the steady-state, transient and temperature characteristics of this
device. This makes it suitable for educational purposes and gives it a practicable value. It is far
more productive than the simple model given in [2], which simulates, very purely, only the
negative resistance region of the Vz-Ig characteristic. It should be clear, however, that the
applicability of the model will be limited to only approximate calculations. This refers
especially to the transient regime - not only because of the assumption of nearly linear charge
distribution (which cannot be quite true for very high rates of change of the emitter current) -
but also because of the effects of the barrier and the existing parasite capacitances, which were
not taken into account.
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